
Conflict Serializability, Locking,
Lock Modes

CS157B
Chris Pollett

Apr.27, 2005.



Outline

• Testing for Conflict Serializability
• Locking and Two Phase Locking
• Different Types of Lock Modes



Testing for Conflict
Serializability

• From our definition of conflicting operation last day, two operations
from different transactions are in conflict if they involve the same
database element and one of the operations is a write.

• We can use conflicts to make a graph based on a schedule.
• We put an edge Ti -> Tj in the graph, if there is an operation Oi of Ti in

the schedule which is in conflict with operation Oj of Tj in the schedule
and Oi occurs before Tj.

• The schedule will be conflict serializable iff this precedence graph is
acyclic.

• If it the graph has a topological ordering, the schedule given by this
ordering will be conflict equivalent to the original schedule. This
topologically ordered schedule will be a serial one.

• To topologically order the graph, we repeatedly take out of the graph
those elements that have no predecessors and put them in our
topological order.



Example Precedence Graph

W1(X), W2(X),
C2, W3(X),
W3(Y),
W1(Y), C3,
C1.

T1

T2

T3

Has a cycle so not
conflict serializable.

If we deleted the
W1(Y,b) it would
have been conflict
serializable.



Serializable versus Conflict
Serializable

• Conflict serializable implies serializable.
• However, serializable does not imply

conflict serializable.
• For example, W1(Y), W1(X), W2(Y),

W2(X), W3(X) is a serial schedule which
has the same effect on the database as
W1(Y), W2(Y), W2(X), W1(X), W3(X),
but this latter is not conflict serializable.



Locking
• We are now going to consider a mechanism for

guaranteeing conflict serializability based on locks.
• In this set-up, the scheduler keeps a table of locks.
• Entries in this table consist of the id of a transaction

together with an id of a database element.
• The scheduler ensures that only transactions which have

the appropriate lock on a database element to do an action
can perform that action.

• Some kinds of locks will prevent other transactions from
obtaining locks on an element.



More on Locking
• To make the locking mechanism of the last slide work, we want:

– Consistency of transactions:
(1) A transaction can only read or write an element ,if it has
previously requested and obtained the lock and it hasn’t since
released the lock.
(2) If a transaction locks an element it must release it a some
point.

– Legality of schedules:
Locks must have their intended meaning -- In the simplest case,

this means no two transactions may have the lock on the
same element without one having first released the lock.

• In a schedule, we write li(X) to say Ti locks X and we write ui(X) to
say Ti releases the lock.



Two Phase Locking (2PL)

• The two phase locking condition is the following:
– For every transaction, all lock requests must precede all

unlock requests.
• It turns out that if this condition is satisfied for a

schedule, then it will be conflict serializable.
• It is called “two-phase”, because for a given

transaction there will be a phase when the number
of locks it has is increasing, followed by a phase
where the number of locks is decreasing.



Why two-phase locking works
• We will only give some intuition…A proof is in the book based on

induction on the number of transactions in a schedule.
• The idea. though, is if T1 reads or writes X, it must first get a lock.
• At that point, it must hold on to the lock until it is done all of its

operations on X. This is because T1 is not allowed in 2PL to get a
lock, release it and re-acquire the lock.

• Thus, if T2 does anything with X it must have done all of its
operations with X before or all of its operations after T1.

• Now suppose T1 and T2 also conflict on some element Y. Tobr
concrete, suppose T2 has the lock on Y. T1 can’t get this lock until T2
releases it, at which point we know T2 can’t acquire more locks so, in
particular, it couldn’t get the lock for X.

• So T2 must do all of its operation of X and Y either before T1 or do
them all after T1.



Different types of Lock Modes
• A more sophisticated locking mechanism allows for

different levels of locks.
• For example, shared and exclusive locks.
• If T1 has a shared lock on X other transactions can also get

a shared lock on X. Write sli(X) in the schedule.
• However, only one transaction at a time can have an

exclusive lock on X and if any transaction has an exclusive
lock on X then no other locks on X can be held. One
cannot get an exclusive lock until everyone else has
released their locks. Write xli(X) in the schedule.

• 2PL is an in the single lock mode case.


