
More Locking

CS157B
Chris Pollett
May 4, 2005.

Outline

• Handling Lock and Unlock Requests
• Lock Granularity
• The Tree Protocol

T2 U no

A Lock Table Entry

• Group mode is used as a quick test on what locks
are currently held. S - indicates only shared. U -
some shared one update, X - only one exlusive
lock.

• Waiting indicates if some transaction is waiting
for a lock on A.

 Elt Info

A

Group Mode:U

Waiting: yes

List:

T1 S no
Tran Mode Wait? Tnext TPrev

T3 X yes

Handling Locking

• To lock A:
– We first check does there exists an entry for A?

• If no, we create it, we add the transaction to the entry, and we
grant the lock.

• If yes, we check the group mode:
– if the mode is S or U and the request is a shared lock, we grant it

and add the transaction to the list.
– If the mode is S and the request is U, we grant the lock request,

and add the transaction to the list.
– If the mode is X or U and the request is S, X or U, we deny the

request, and add the transaction to the list but with Wait? having
value ‘yes’.

Handling Unlocking

• If T unlocks A:
– T’s entry in the list for A is deleted.
– If T had a U lock then we change the group mode to S

if there are any transaction still in the list.
– If T had value a U or X and Waiting is ‘yes’ then we

can grant to one of the waiting transactions the lock.
This grant can be based on one of the following
strategies:

• First come first serve.
• Priority to shared locks -- First come first serve to shared lock,

then updates, then exclusive locks.
• Priority to upgrading -- if T has U and is waiting for an X-lock,

grant T first. Otherwise, follow one of the previous strategies.

Lock Granularity
• We want to be able to have hierarchies of possible locks -- from locks

on only one element to a single lock for many elements.
• These hierarchies will typically come in the form of trees.
• For instance, a table lock would be higher in such a tree structure than

a block level lock which is turn higher than a row lock.
• As another example, we might want to be able to lock single index

entries or whole subtrees of a B-tree.
• An example of the advantage of having big locks is if a transaction is

frequently accessing a table it is faster to only do one lock that one for
each access.

• If Oracle sees you doing multiple reads on a table it tries to increase
the granularity of the shared lock you have.

Warning Locks
• One way to manage such hierachies is to introduce a new

kinds of lock called a warning locks, IS and IX in addition
to S and X. The I indicates intention to acquire a lock. (The
idea is similar to update locks)

• Let’s assume we have three levels of locks: table, block,
row.

• Let T be the tree of all locks currently held on table S.
– Start at root of hierarchy. If we are at the element we

want request either an S or X lock.
– If not traverse down tree tell get to the element we

want. For each node on this path, we request an IS or
IX lock.

Table Locks

Blk Locks

Row Locks

Warning Lock Compatibility
Matrix

• Here’s what the compatibility matrix looks like:

Lock held IS

in mode IX

 S

 X

Y Y

YY

Lock Requested
IS IX S X

Y N Y

N

Y

N

N

N

N N N N

Phantoms and Handling
Insertions Correctly

• Notice in our locking scheme we can only lock items that already exist.
• Consider the query where we sum the lengths of all movies made by

Disney.
• While we are performing this query someone might insert a row with a

Disney movie.
• If we repeat our query in the same transaction we might see a different

sum. This problem tuple is called a phantom tuple.
• The solution to the problem is to require locking the whole table for

reads or writes, but this come with a heavy performance hit.

The Tree Protocol
• Standard locking protocols make it very hard to do concurrency when

doing locking with B-trees.
• The problem is we would typically need to lock a whole path down

the tree in case the tree changes during an update. This prevents other
people from looking at the tree.

• Instead, to get concurrency for B-trees, we don’t use two phase locking
and:
– a transaction’s first lock in the tree may be at any node of the tree

(typically lock first node that could be changed by your
transaction.)

– subsequent locks can be obtained iff the transaction has the parent
lock.

– nodes can be unlocked at any time
– a transaction may not relock a node it has released.

