# Regular Pumping Lemma; Start CFGs 

## CS154

## Chris Pollett

Feb. 27, 2006.

## Outline

- Finish Myhill-Nerode
- Language which are not Regular
- Pumping Lemma
- Context Free Grammars


## Finish Myhill Nerode

- Last day we defined two equivalence notions on strings: language indistinguishability $\equiv_{\mathrm{L}}$ and machine indistinguishability $\equiv_{\mathrm{M}}$.
- We said the equivalence classes of the latter are contained in the former.
- To complete the proof of the Myhill-Nerode Theorem we prove that if L is regular, there is a finite automata that has exactly the number of states as there are equivalence classes of $\equiv_{\mathrm{L}}$.


## Myhill Nerode Machine

- States: $[\mathrm{x}]$ - equivalence classes of $\equiv_{\mathrm{L}}$.
- Alphabet - same as L.
- Transition function: ([x], a) --> [xa].
- Start state $[\varepsilon]$
- Final States - states [w] such that there is some w' in [w] and w' in L.
- From the last slide, we know the above machine will have the minimal number of states of any DFA recognizing L. There are actually algorithms which given a machine for L , collapse states by looking at this distinguishability notion until the minimum number of states is achieved (see Hopcraft and Ullman or Sudkamp).


## Languages that are not Regular

- It turns out not all languages are regular.
- To see this consider the language $\mathrm{L}=$ $\left\{a^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mid \mathrm{n}>=0\right\}$
- $a^{j}$ is not $\overline{\underline{E}}_{\mathrm{L}}$ to $a^{\mathrm{n}}$ unless $\mathrm{j}=\mathrm{n}$ and.
- So L has infinite index so according to the Myhill Nerode theorem it is not regular.
- We will now look at another technique for proving languages not regular: the pumping lemma.


## The Pumping Lemma

- Suppose we have a machine M with k states.
- Feed in some input string w of length $n>k$. At some point in the computation, by the Pigeonhole principle, the machine must repeat a state.
- Suppose M accepts w. Then can imagine M's computation splitting w into 3 pieces, $\mathrm{w}=\mathrm{xyz}$, according to the diagram:



## More on the Pumping Lemma

- But this implies that M accepts the strings xz , xyyz, xyyyz, etc.
- This is essentially what the Pumping Lemma says.
- More precisely the Pumping Lemma says:

If $A$ is a regular language, then there is a number $p$ (the pumping length) where, if $s$ is any string in A of length at least p , then s may be divided into three pieces $s=x y z$, such that:

1. for each $i>=0, x y^{i} z$ is in $A$
2. $|y|>0$, and
3. $|x y|<=p$

## Using the Pumping Lemma

- We can use the pumping lemma to show language are not regular.
- For example, let $\mathrm{C}=\{\mathrm{wl} w$ has an equal number of 0 's and 1's\}.
- Suppose DFA M recognizes C. Let p be M's pumping length and consider the string $\mathrm{w}=0 \mathrm{p} 1 \mathrm{p}$. This string is in the language and has length $>p$. So $w=x y z$, where $|x y|<=p$. That means $x=0^{i}$ and $y=0^{j}$ where $i+j<=p$ and $j>0$. But then, $x z=0^{i} 1^{p}$ should be in the language. As $i$ is not equal to $p$ this give a contradiction. So C is not regular.


## Context Free Languages

- We saw that regular languages were useful for doing things like string matching.
- This might occur in practice as the so-called lexical analysis phase of compiler. That is, the phase in which we recognize tokens like language reserved words, variable names, constants, etc.
- We now turn to ways of specify programming languages or even aspects of natural languages.
- The key to this is to have some way to recognize the underlying structures such as nouns and verbs, or control blocks, etc of the language.
- Context Free Grammars (CFGs) and their languages will provide us with the tools to do this.


## Example CFG

- A grammar consists of a collection of substitution rules (aka productions). For instance:

$$
\begin{aligned}
& \text { A --> 0A1 } \\
& \text { A --> B } \\
& \text { B --> \# }
\end{aligned}
$$

- A rule has a two types of symbols variables and terminals.
- Usually, we'll write variables using uppercase letters or in brackets like <variable>. Terminals are supposed to be strings over the alphabet of the language we are considering.
- In a CFG, the left hand side of each rule has one variable; the right hand side can be a string of variables and terminals.
- Variables can be substituted for; terminals cannot. One variable usually denoted by $S$ is usually distinguishes as a start variable.
- An example sequence of substitutions (aka a derivation) in the above grammar might be: $\mathrm{A}=>0 \mathrm{~A} 1=>00 \mathrm{~A} 11=>00 \mathrm{~B} 11=>00 \# 11$


## More on CFGs

- Such a derivation might also be drawn as a parse tree:

- The set of all strings generated by a grammar is called the language of the grammmar.
- A language generated by some context free grammar is called a context free language.
- Sometimes we abbreviate multiple rules with same LHS using a `l’. For example, A--> 0A1 I B .

