Regular Pumping Lemma; Start
CFGs

CS154
Chris Pollett
Feb. 27, 2006.



Outline

Finish Myhill-Nerode
Language which are not Regular
Pumping Lemma

Context Free Grammars



Finish Myhill Nerode

e Last day we defined two equivalence notions on
strings: language indistinguishability =, and
machine indistinguishability =,,.

 We said the equivalence classes of the latter are
contained in the former.

 To complete the proof of the Myhill-Nerode
Theorem we prove that if L 1s regular, there 1s a
finite automata that has exactly the number of
states as there are equivalence classes of =, .




Myhill Nerode Machine

States: [x] - equivalence classes of =, .
Alphabet - same as L.
Transition function:
([x], a) --> [xa].
Start state [¢€]
Final States - states [w] such that there is some w’ in [w] and w’ 1n L.

From the last slide, we know the above machine will have the minimal
number of states of any DFA recognizing L. There are actually
algorithms which given a machine for L, collapse states by looking at
this distinguishability notion until the minimum number of states is
achieved (see Hopcraft and Ullman or Sudkamp).



Languages that are not Regular

It turns out not all languages are regular.

To see this consider the language L =
{a"b" | n >=0}

al is not =, to a" unless j=n and.

So L has infinite index so according to the Myhill
Nerode theorem it is not regular.

We will now look at another technique for proving
languages not regular: the pumping lemma.



The Pumping Lemma

* Suppose we have a machine M with k states.

* Feed in some input string w of length n>k. At
some point in the computation, by the Pigeonhole
principle, the machine must repeat a state.

e Suppose M accepts w. Then can imagine M’s
computation splitting w into 3 pieces, w=Xxyz,

according to the diagram:
Z

FaGoN

y



More on the Pumping Lemma

But this implies that M accepts the strings xz,
Xyyz, Xyyyz, etc.

This 1s essentially what the Pumping Lemma
says.

More precisely the Pumping Lemma says:

If A is a regular language, then there 1s a number p (the
pumping length) where, 1f s 1s any string in A of
length at least p, then s may be divided into three
pieces s=xyz, such that:

1. foreachi>=0, xy'zisin A
2. lyl>0, and
3. Ixyl<=p



Using the Pumping Lemma

* We can use the pumping lemma to show language
are not regular.

* For example, let C={ wl w has an equal number of
0’s and 1’s}.

* Suppose DFA M recognizes C. Let p be M’s
pumping length and consider the string w = OP1P,
This string is 1n the language and has length >p.
So w = xyz, where Ixyl <=p. That means x = 0' and
y=0) where i+j <=p and j>0. But then, xz = 0'1P
should be 1n the language. As 11s not equal to p
this give a contradiction. So C 1s not regular.



Context Free Languages

We saw that regular languages were useful for
doing things like string matching.

This might occur in practice as the so-called
lexical analysis phase of compiler. That 1s, the

phase 1n which we recognize tokens like language
reserved words, variable names, constants, etc.

We now turn to ways of specitfy programming
languages or even aspects of natural languages.

The key to this 1s to have some way to recognize
the underlying structures such as nouns and verbs,
or control blocks, etc of the language.

Context Free Grammars (CFGs) and their
languages will provide us with the tools to do this.



Example CFG

A grammar consists of a collection of substitution rules (aka
productions). For instance:

A -->0A1
A-->B
B-->#
A rule has a two types of symbols variables and terminals.

Usually, we’ll write variables using uppercase letters or in brackets
like <variable>. Terminals are supposed to be strings over the alphabet
of the language we are considering.

In a CFG, the left hand side of each rule has one variable; the right
hand side can be a string of variables and terminals.

Variables can be substituted for; terminals cannot. One variable
usually denoted by S is usually distinguishes as a start variable.

An example sequence of substitutions (aka a derivation) in the above
grammar might be: A =>0A1 =>00A11 =>00B11 =>00#11



More on CFGs

Such a derivation might also be drawn as a parse tree:

The set of all strings generated by a grammar 1s called the
language of the grammmar.

A language generated by some context free grammar 1s
called a context free language.

Sometimes we abbreviate multiple rules with same LHS
using a I’. For example, A-->0A1 | B.



