
Regular Pumping Lemma; Start
CFGs

CS154
Chris Pollett

Feb. 27, 2006.



Outline

•  Finish Myhill-Nerode
• Language which are not Regular
• Pumping Lemma
• Context Free Grammars



Finish Myhill Nerode

• Last day we defined two equivalence notions on
strings: language indistinguishability ≡L and
machine indistinguishability ≡M.

• We said the equivalence classes of the latter are
contained in the former.

• To complete the proof of the Myhill-Nerode
Theorem we prove that if L is regular, there is a
finite automata that has exactly the number of
states as there are equivalence classes of ≡L .



Myhill Nerode Machine
• States: [x] - equivalence classes of ≡L.
• Alphabet - same as L.
• Transition function:

([x], a) --> [xa].
• Start state [ε]
• Final States - states [w] such that there is some w’ in [w] and w’ in L.

• From the last slide, we know the above machine will have the minimal
number of states of any DFA recognizing L. There are actually
algorithms which given a machine for L, collapse states by looking at
this distinguishability notion until the minimum number of states is
achieved (see Hopcraft and Ullman or Sudkamp).



Languages that are not Regular

• It turns out not all languages are regular.
• To see this consider the language L =

{anbn | n >=0}
• aj is not ≡L to an unless j=n and.
• So L has infinite index so according to the Myhill

Nerode theorem it is not regular.
• We will now look at another technique for proving

languages not regular: the pumping lemma.



The Pumping Lemma

• Suppose we have a machine M with k states.
• Feed in some input string w of length n>k. At

some point in the computation, by the Pigeonhole
principle, the machine must repeat a state.

• Suppose M accepts w. Then can imagine M’s
computation splitting w into 3 pieces, w=xyz,
according to the diagram:

q0
q

q’

x

y

z



More on the Pumping Lemma

• But this implies that M accepts the strings xz,
xyyz, xyyyz, etc.

• This is essentially what the Pumping Lemma
says.

• More precisely the Pumping Lemma says:
If A is a regular language, then there is a number p (the

pumping length) where, if s is any string in A of
length at least p, then s may be divided into three
pieces s=xyz, such that:
1. for each i>= 0, xyiz is in A
2. |y| > 0, and
3.  |xy| <= p



Using the Pumping Lemma

• We can use the pumping lemma to show language
are not regular.

• For example, let C={ w| w has an equal number of
0’s and 1’s}.

• Suppose DFA M recognizes C. Let p be M’s
pumping length and consider the string w = 0p1p.
This string is in the language and has length >p.
So w = xyz, where |xy| <=p. That means x = 0i and
y=0j where i+j <=p and j>0. But then, xz = 0i1p

should be in the language. As i is not equal to p
this give a contradiction. So C is not regular.



Context Free Languages
• We saw that regular languages were useful for

doing things like string matching.
• This might occur in practice as the so-called

lexical analysis phase of compiler. That is,  the
phase in which we recognize tokens like language
reserved words, variable names, constants, etc.

• We now turn to ways of specify programming
languages or even aspects of natural languages.

• The key to this is to have some way to recognize
the underlying structures such as nouns and verbs,
or control blocks, etc of the language.

• Context Free Grammars (CFGs) and their
languages will provide us with the tools to do this.



Example CFG
• A grammar consists of a collection of substitution rules (aka

productions). For instance:
A --> 0A1
A --> B
B --> #

• A rule has a two types of symbols variables and terminals.
• Usually, we’ll write variables using uppercase letters or in brackets

like <variable>. Terminals are supposed to be strings over the alphabet
of the language we are considering.

• In a CFG, the left hand side of each rule has one variable; the right
hand side can be a string of variables and terminals.

• Variables can be substituted for; terminals cannot. One variable
usually denoted by S is usually distinguishes as a start variable.

• An example sequence of substitutions (aka a derivation) in the above
grammar might be: A => 0A1 => 00A11 => 00B11 => 00#11



More on CFGs
• Such a derivation might also be drawn as a parse tree:

• The set of all strings generated by a grammar is called the
language of the grammmar.

• A language generated by some context free grammar is
called a context free language.

• Sometimes we abbreviate multiple rules with same LHS
using a `|’. For example, A--> 0A1 | B .

A
A
A
B
# 1 100


