
Software Design Patterns

CS134

Chris Pollett

Sep. 13, 2004

Introduction

We will discuss the following patterns today:
• Strategy
• Template Method
• Command
• Composite
• Singleton
• Bridge
• Document-View

Strategy

Is related to delegation mentioned before:

In Pop cCritter::feellistener() calls a
cListener::listen(cCritter *pCritter)

Context

Strategy

Strategy1 Strategy2

Strategy *_pstrategy

behave(){

_pstrategy->
behavealgorithm(this);}

virtual behavealgorithm(cContext
*pcaller)

behavealgorithm()
{..}

behavealgorithm()
{..}

Template Method

Problem:
• Have a bunch of different child classes with

a common base class.
• Want each child to execute a fixed sequence

of methods in the same order.
• Want to be able to vary what the individual

calls do.

Template Method Solution
BaseClass

virtual hookMethod1()

Virtual hookMethod2()

templateMethod()

{

… hookMethod1();

…hookMethod2(); … }

ChildA

hookMethod1()

hookMethod2()

ChildB

hookMethod1()

hookMethod2()

Template Method in Pop

• cGame::step is a template that has a sequence of
calls to cGame methods that update the critters in
a certain order. You might override some of these
methods.

• In particular, you could rewrite
cGame::adjustGameParameters and
cGame::gameOverMessage.

• cSprite::draw calls other stuff then
cSprite::imageDraw which you can override.

Command

• You want an object to do something, but you don’t
know exactly when the object will carry out the
request or how it will do it.

• The solution is to create a command object that
represents the command to be executed together
with info about target object that is supposed to
affected.

• Use the Command Object in conjunction with a
command processor object which holds a
collection of commands.

Command UML
CommandProcessor

addCommand(Command *)

processCommands()

*

Command

int _commandinfo

Target *_preceiver

execute()

CommandA

CommandB

execute()

execute()

Command in Pop

• In Windows have a Command pattern facsimile.
Objects are stored in message structures with
message IDs. Unfortunately, execute is passed off
to a big switch depending on ID type.

• Similarly, in Pop there is a cServiceRequest struct
which passes the task of executing commands off
to a big switch in cBiota

• cGame::step calls cBiota::processServiceRequests
to handle all the outstanding requests.

Composite

• The problem is you have a set of Primitive Objects
which you also group into Composite objects and
you want to be able to treat the primitive and
composite objects the same.

• The solution is to have a base class Component
which has both the primitive and composite
objects inheriting from it. Composite has a
member which holds any number of Components.
Component might have a method do something
which you can override in the child classes.

Composite UML
Component

Primitive1

Primitive2

Composite

Component
*_pchildren()

Composite1

Composite2

*

Composite in Pop

• Composite can be thought as giving a tree whose
leaves are Primitive Objects. doSomething() for
the whole thing percolates down to the
doSomething on the leaves.

• cSpriteComposite uses this pattern to build
complex sprite out of simple cSprite’s and its
subclasses like cSpriteBubble, cSpriteIcon, etc.

Singleton

• The problem is that one wants only one
instance of a class to be possible.

• The solution is to give the class a single
static Singleton *_pinstancesingleton
member which is initially NULL. The class
has an accessor function public static
accessor which either returns the only
instance or constructs one instance.

Singleton UML
Singleton

private static Singleton *_pinstancesingleton

private Singleton();

public static Singleton* pinstance()

{

if(_pinstancesingleton == NULL) _pinstancesingleton = new
Singleton();

return _pinstanceSingleton;

}

Singleton in Pop

• Used in cRandomizer. This class has a large
number of useful functions for returning random
integers, reals, vectors, colors and so on. The
method that returns random values can’t be static
because the internal state of cRandomizer is
changed with each call.

• Should have a deleteSingleton() function to get rid
of stuff when done. Otherwise can get memory
leak.

Bridge

• The problem is that one has a set of methods that
have been implemented in multiples ways. Don’t
want to mess up the rest of your code with always
spelling out which way.

• The solutions is to make a common interface from
which both implementation inherit and then use
the interface functions for the rest of your code.

Bridge UML

Context
Interface

Implementation1 Implementation2

Interface *_bridge

virtual alg1(cContext *pCaller);

virtual alg2(cContext *pCaller);

virtual alg3(cContext *pCaller);

alg1(..)

alg2(..)

alg3(..)

alg1(..)

alg2(..)

alg3(..)

alg1(){_pbridge->alg1(this);}

…

Bridge in Pop

• CPopView owns a cGraphics interface
which uses dynamically either
cGraphicsMFC or cGraphicsOpenGL to
actually implement it.

Document-View

• The problem is one has a number of different
representations of the same information. How do
we keep the various views in-sync with each
other.

• The solution is to have two classes Document and
View. The Document has a list of Views and has a
method UpdateAllViews to notify views of
changes in data. A view has a *getDoc() function
and an OnUpdate() function called by
UpdateAllViews().

Document-View UML
Document View

add(View *pview)

UpdateAllViews();
Document *getDoc();

OnUpdate()

*

Document View in Pop

• CDocument and CView -- latter could
control if see things in wireframe.

	Software Design Patterns
	Introduction
	Strategy
	Template Method
	Template Method Solution
	Template Method in Pop
	Command
	Command UML
	Command in Pop
	Composite
	Composite UML
	Composite in Pop
	Singleton
	Singleton UML
	Singleton in Pop
	Bridge
	Bridge UML
	Bridge in Pop
	Document-View
	Document-View UML
	Document View in Pop

