
Sprites

CS134
Chris Pollett
Oct 4, 2004.

Introduction

• Kinds of sprite
• The cSprite class
• Polygons
• Composite Sprites
• The cSpriteIcon class
• cSpriteLoop and cSpriteDirectional

Kinds of sprite

• ‘Sprite’ in computer games just means a little
character you can move around. Not some fairy
creature from D&D.

• Often based on bitmaps (In Pop, SpriteIcon).
• Can be built based on geometrical objects to make

scale independent. Ex. cPolygon.
• Can make complicated sprites from simple ones:

cSpriteComposite which has children:
cSpriteBubble, or cPolyPolygon.

More kinds of Sprites

• One variant of cSpriteComposite is
cSpriteShowOneChild. Could use if wanted
animations (cSpriteLoop) or the sprite to
change appearance depending on the
direction one is moving
(cSpriteDirectional).

UML
cSprite

cSpriteIcon cPolygon cSprite3D cSpriteComposite

*

cSpriteCircle cSpriteBubble cSpritePolyPolygon cSpriteShowOneChild

cSpriteBubblePie cSpriteBubbleGrayScale

cSpriteDirectional cSpriteLoop

The cSprite class

• Does not have a pointer to its owner critter
– So don’t have to maintain any inverse reference

• Has a Real _radius to specify its size.

• Since sprites might be composite, the method:
virtual Real cSprite::radius() shouldn’t always return the

value _radius.
This method is used for collision detection

• Sprites also have a _spriteattitude matrix which by
default is the identity matrix

The sprite draw Method

• Has the same arguments as cCritter::draw
• Manipulates graphics matrices and call helper

method cSprite::imagedraw

• Graphics pipeline gets critter’s _attitude
– Moves zero vector to critter origin
– Sets Sprite spatial attitude to match critters.

• Should Multiply by _spriteattitude if want to position some
other way

Graphics Pipeline

• The graphics pipeline is implemented as a
cGraphics object which maintains two cMatrix’s
– One is the projection matrix
– The other is the modelview matrix.

• This has the form MV = V'*Mc*Ms where Ms is the
_spriteattitude, Mc is the critter’s _attitude, and V’ is the
_attitude of the cCritterViewer which views the scene.

• In case of composite sprites might have subsidiary matrices
Msa multiplies to the right of Ms

• A vertex u of a sprite polygon is transformed to:
u'= P*MV*u where P is projection matrix.

• Multiplication is done with cGraphics::multMatrix

Sequence Diagram of draw
pCritter psprite pgraphics

pushMatrix()

multMatrix(_attitude)

draw

imagedraw

pushMatrix()

multMatrix(_spriteattitude)

popMatrix()

popMatrix()

drawSomethign()

imagedraw

• The above diagram implements the template
pattern where specific drawing is done by the
imagedraw function. For example
void cPolygon::imagedraw(cGraphics *pgraphics, int

drawflags)
{

pgraphics->drawpolygon(this, drawflags);
}

• For cSpriteIcon::imagedraw the call pgraphics-
>drawbitmap(this, drawflags); is done

• Remember cGraphics is a bridge to underlying
MFC or OpenGL implementation

The animate method

• cCritter::animate(dt) does two things:
– Makes an updateAttitude(dt) call to

• match the critter’s attitude to the critter’s current motion
matrix if the critter’s _attitudemotionlock is TRUE, or,
otherise

• rotate the critter’s _attitude by dt*_spin or
• leave the the _attitude alone if _spin is zero

– Calls _psprite->animate(dt,this)
• Does nothing by default. Could look at powner-

>recentlyDamaged() and change sprite or look at dt and
change sprite size, etc.

More animate

• cGraphicsMFC needs different bitmaps for
different directions since can’t rotate bitmaps.

• cSpriteShowOneChild::_showindex says which
sprite component is currently active

• cSpriteLoop::animate ages a timer and adjusts
_showindex

• cSpriteDirectional::animate adjusts the
_showindex sprite according to powner->tangent()

Polygons

• Most graphics systems have some way to
draw polygons. Ex CDC::Polygon(POINT
*vertices, int vertexcount) in Windows.

• Polygons scale well to different sizes.
• In Pop, can call cPolygon() to create an

empty polygon.
• Then can use mutators to create a more

intersting polygon

Polygon mutators

void setRegularPolygon(int vertexcount);
void setStarPolygon(int vertexcount, int step);
void setRandomStarPolygon(int mincount, int

maxcount);
void setRandomRegularPolygon(int mincount, int

maxcount)
void setRandomAsteroidPolygon(int mincount =5,

int maxcount -30, Real spikiness = 0.3)

//The contructor cPolygon(n) creates a regular n-gon

More mutators

• polygon.h has more mutators for affecting
polygon appearance

• ppolygon->randomize(cPolygon::MF_COLOR)
can be used to randomize color MF_ALL to
randomize all attributes

• Some attributes: _reallinewidth, _edged, _dotted,
_realdotradius.

• cSpriteCircle is just a cSpritePolygon where the
number of edges is large. Set by CIRCLESLICES.

Polygons in 3D

• When using cGraphicsOpenGL, polygons
are drawn as a thick prism.

• The exact thickness of the prism is
controlled by the Real _prismdz field

Composite Sprites

• cSpriteComposite holds an array of cSprite
pointers called _childspriteptr.

• The default draw for this class looks like
for(int i=0; i<_childspriteptr.GetSize(); i++)

_childspriteptr[i]->draw(pgraphics, drawflags);

cSpriteBubble

• cSpriteBubble ss implemented as a
cSpriteComposite with two member sprite: a
cSpriteCircle and a cSpritePolygon.

• The latter is supposed to be a fake reflection on
the bubble.

• The reflections lives slightly on top of the circle to
avoid “z-fighting”

• Doing this makes use of _spriteattitude and
cMatrix::translation(cVector(side,0.5*side,.1)) to
position this accent.

Polypolygons

• This is a cSpriteComposite which consists of a
base polygon together with a secondary tipshape
polygon for each vertex.

• setBasePoly(cPolygon* pppoly) and
setTipShape(cSprite *pshape) can be used to set
these.

• Spacewar give an example of polypolygons: Look
at Game | Polypolygon.

• Tipshapes are rotated for each vertex.

The cSpriteIcon class
• Constructor is cSpriteIcon(int resourceID, BOOL transparent=TRUE, BOOL

presetaspect= FALSE);
• Notice by default background of bitmap is transparent.
• This kind of sprite can be set with a line like

– setSprite(new SpriteIcon(IDB_EARTH));
• The third argument of the constructor is used if one wants to fit sprites to some

new rectangular shape. Ex: see cSpriteIconBackground
• To use this kind of sprite:

– Need to create new .bmp files
– Size them roughly according to how big will be onscreen.
– Make edge size a power of 2. 16,32, 64 … this way will resize
– Remember upper left pixel color is used as background color
– Save bitmaps in 8 pixel mode
– Use Project | Add Resource .. | Import … to add the resource

cSpriteLoop and
cSpriteDirectional

• Are both arrays of other sprites
• Have ‘add’ method to add sprites.

– For cSpriteIcon’s can add with add(resourceID)
Ex:
cSpriteLoop *pwalkman = new cSpriteLoop();
pmanwalk->add(IDB_MAN1);
pmanwalk->add(IDB_MAN2);
setSprite(pmanwalk);

• The delay between flipping images set with
cSpriteLoop::setFlipwait(Real flipwait)

• cSpriteDirectional splits circle into as many regions as add sprites.
Shows nth sprite if moving in nth direction from clockwise vertical

