
Sprites

CS134
Chris Pollett
Oct 4, 2004.



Introduction

• Kinds of sprite
• The cSprite class
• Polygons
• Composite Sprites
• The cSpriteIcon class
• cSpriteLoop and cSpriteDirectional



Kinds of sprite

• ‘Sprite’ in computer games just means a little
character you can move around. Not some fairy
creature from D&D.

• Often based on bitmaps (In Pop, SpriteIcon).
• Can be built based on geometrical objects to make

scale independent. Ex. cPolygon.
• Can make complicated sprites from simple ones:

cSpriteComposite which has children:
cSpriteBubble, or cPolyPolygon.



More kinds of Sprites

• One variant of cSpriteComposite is
cSpriteShowOneChild. Could use if wanted
animations (cSpriteLoop) or the sprite to
change appearance depending on the
direction one is moving
(cSpriteDirectional).
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The cSprite class

• Does not have a pointer to its owner  critter
– So don’t have to maintain any inverse reference

• Has a Real _radius to specify its size.

• Since sprites might be composite, the method:
virtual Real cSprite::radius() shouldn’t always return the

value _radius.
This method is used for collision detection

• Sprites also have a _spriteattitude matrix which by
default is the identity matrix



The sprite draw Method

• Has the same arguments as cCritter::draw
• Manipulates graphics matrices and call helper

method cSprite::imagedraw

• Graphics pipeline gets critter’s _attitude
– Moves zero vector to critter origin
– Sets Sprite spatial attitude to match critters.

• Should Multiply by _spriteattitude if want to position some
other way



Graphics Pipeline

• The graphics pipeline is implemented as a
cGraphics object which maintains two cMatrix’s
– One is the projection matrix
– The other is the modelview matrix.

• This has the form MV = V'*Mc*Ms where Ms is the
_spriteattitude, Mc is the critter’s _attitude, and V’ is the
_attitude of the cCritterViewer which views the scene.

• In case of composite sprites might have subsidiary matrices
Msa multiplies to the right of Ms

• A vertex u of a sprite polygon is transformed to:
u'= P*MV*u where P is projection matrix.

• Multiplication is done with cGraphics::multMatrix



Sequence Diagram  of draw
pCritter psprite pgraphics

pushMatrix()

multMatrix(_attitude)

draw

imagedraw

pushMatrix()

multMatrix(_spriteattitude)

popMatrix()

popMatrix()

drawSomethign()



imagedraw

• The above diagram implements the template
pattern where specific drawing is done by the
imagedraw function. For example
void cPolygon::imagedraw(cGraphics *pgraphics, int

drawflags)
{

pgraphics->drawpolygon(this, drawflags);
}

• For cSpriteIcon::imagedraw the call pgraphics-
>drawbitmap(this, drawflags); is done

• Remember cGraphics is a bridge to underlying
MFC or OpenGL implementation



The animate method

• cCritter::animate(dt) does two things:
– Makes an updateAttitude(dt) call to

• match the critter’s attitude to the critter’s current motion
matrix if the critter’s _attitudemotionlock is TRUE, or,
otherise

• rotate the critter’s _attitude by dt*_spin or
• leave the the _attitude alone if _spin is zero

– Calls _psprite->animate(dt,this)
• Does nothing by default. Could look at powner-

>recentlyDamaged() and change sprite or look at dt and
change sprite size, etc.



More animate

• cGraphicsMFC needs different bitmaps for
different directions since can’t rotate bitmaps.

• cSpriteShowOneChild::_showindex says which
sprite component is currently active

• cSpriteLoop::animate ages a timer and adjusts
_showindex

• cSpriteDirectional::animate adjusts the
_showindex sprite according to powner->tangent()



Polygons

• Most graphics systems have some way to
draw polygons. Ex CDC::Polygon(POINT
*vertices, int vertexcount) in Windows.

• Polygons scale well to different sizes.
• In Pop, can call cPolygon() to create an

empty polygon.
• Then can use mutators to create a more

intersting polygon



Polygon mutators

void setRegularPolygon(int vertexcount);
void setStarPolygon(int vertexcount, int step);
void setRandomStarPolygon(int mincount, int

maxcount);
void setRandomRegularPolygon(int mincount, int

maxcount)
void setRandomAsteroidPolygon(int mincount =5,

int maxcount -30, Real spikiness = 0.3)

//The contructor cPolygon(n) creates a regular n-gon



More mutators

• polygon.h has more mutators for affecting
polygon appearance

• ppolygon->randomize(cPolygon::MF_COLOR)
can be used to randomize color MF_ALL to
randomize all attributes

• Some attributes: _reallinewidth, _edged, _dotted,
_realdotradius.

• cSpriteCircle is just a cSpritePolygon where the
number of edges is large. Set by CIRCLESLICES.



Polygons in 3D

• When using cGraphicsOpenGL, polygons
are drawn as a thick prism.

• The exact thickness of the prism is
controlled by the Real _prismdz field



Composite Sprites

• cSpriteComposite holds an array of cSprite
pointers called _childspriteptr.

• The default draw for this class looks like
for(int i=0; i<_childspriteptr.GetSize(); i++)

_childspriteptr[i]->draw(pgraphics, drawflags);



cSpriteBubble

• cSpriteBubble ss implemented as a
cSpriteComposite with two member sprite: a
cSpriteCircle and a cSpritePolygon.

• The latter is supposed to be a fake reflection on
the bubble.

• The reflections lives slightly on top of the circle to
avoid “z-fighting”

• Doing this makes use of _spriteattitude and
cMatrix::translation(cVector(side,0.5*side,.1)) to
position this accent.



Polypolygons

• This is a cSpriteComposite which consists of a
base polygon together with a secondary tipshape
polygon for each vertex.

• setBasePoly(cPolygon* pppoly) and
setTipShape(cSprite *pshape) can be used to set
these.

• Spacewar give an example of polypolygons: Look
at Game | Polypolygon.

• Tipshapes are rotated for each vertex.



The cSpriteIcon class
• Constructor is cSpriteIcon(int resourceID, BOOL transparent=TRUE, BOOL

presetaspect= FALSE);
• Notice by default background of bitmap is transparent.
• This kind of sprite can be set with a line like

– setSprite(new SpriteIcon(IDB_EARTH));
• The third argument of the constructor is used if one wants to fit sprites to some

new rectangular shape. Ex: see cSpriteIconBackground
• To use this kind of sprite:

– Need to create new .bmp files
– Size them roughly according to how big will be onscreen.
– Make edge size a power of 2. 16,32, 64 … this way will resize
– Remember upper left pixel color is used as background color
– Save bitmaps in 8 pixel mode
– Use Project | Add Resource .. | Import … to add the resource



cSpriteLoop and
cSpriteDirectional

• Are both arrays of other sprites
• Have ‘add’ method to add sprites.

– For cSpriteIcon’s can add with add(resourceID)
Ex:
cSpriteLoop *pwalkman = new cSpriteLoop();
pmanwalk->add(IDB_MAN1);
pmanwalk->add(IDB_MAN2);
setSprite(pmanwalk);

• The delay between flipping images set with
cSpriteLoop::setFlipwait(Real flipwait)

• cSpriteDirectional splits circle into as many regions as add sprites.
Shows nth sprite if moving in nth direction from clockwise vertical


