More Visible Surface Detection

CS116B
Chris Pollett
Mar. 16, 2005.



Outline

The A-Buffer Method

The Scan-Line Method

The Depth Sorting Method

BSP Trees, Area Subdivision, and Octrees
Wire-frame Visibility Methods

OpenGL Visibility Detection Functions




The A-Buffer Method

Extends z-buffering, so get anti-aliasing and can handle non-opaque
surfaces.

Developed at Lucasfilms.
‘A’ 1s for accumulation.

Each position in the buffer can now reference a linked-list of surfaces.
This allows blending for transparency and anti-aliasing.

Each position in the A-buffer store a real number for depth type and a
pointer to surface info.

A positive value indicates only one surface contributes, a negative
value means to expect a linked list.

Surface info includes RGB values, opacity, depth, percent of pixel
covered, surface identifier, etc.



The Scan-LLine Method

\ | . / / Scan Line 1

\. / / Scan Line 2

Scan line by line through image.

Use polygon tables, figure out intersection of scan with edges of
polygons.

Have flag that keeps track of which polygons are relevant. At a left hand

intersection this flag is turned on and at the right hand side it is turned
off.

Compute depth values if on, to figure out what color to draw that portion
of line.

Can work out next scan line incrementally from the current scan line
Cyclic overlaps can be handled by subdividing the relevant polygons.



o X

T~

v

Z

x  Depth Sorting X
Fig. 1 "z Fig.2
The depth sorting method:

— sorts surfaces based on depth

— surfaces are scan converted in order starting with the surface of
greatest depth.

This is sometimes called the painter’s algorithm.
Cycles through surfaces S one by one.

If the depths of S and some other surface S’ do not overlap (Fig 1), S’s
position in order is left unchanged.

If overlaps occur, then check (a) bounding rectangles of S and S’ in xy
plane - if no overlap leave unchanged. (b) if complete overlap make
nearest object later in list (¢) if edge projections overlap might reorder
which to draw first. -- The algorithm is not perfect (might get loops, so
might subdivide).



BSP Tree, Area Subdivision, and
Octrees

To use BSP trees for objects visibility:

— Insert objects into BSP tree according to planes, P1, P2, etc. Each
plane has a front and a back and in tree this corresponds to a left or
right pointer.

— When we draw, we traverse the tree going down left edges first
then right edge then parent. We render surfaces at leaves when get
to them.

Similar, idea works with octrees.

Area subdivision is a similar technique applied to the view-plane area.
Essentially split view plane recursively into quadrants until each
quadrant is either a single surface, has no surface, or is one pixel in
size. Then render quadrants.



Wireframe Visibility Methods

Procedures for determining object edges are referred to as
wire-frame visibility methods, visible line methods, or
hidden-line detection methods.

Two common techniques are wire-frame surface visibility
and wireframe depth-cueing.

In the first we compare endpoints of each edge with
surfaces in scene. If both endpoints are in front or behind a
surface, then easy. Otherwise, need to calculate point of
intersection with surface to determine what to render.

In the second technique, we adjust the color of line
according to the function: fdepth(d) =(d, . .-d)/(d

max max_dmin) .



OpenGL Visibility Detection
Functions

* To eliminate back faces, we use the OpenGL
functions:

glEnable(GL_CULL_FACE);
glCullFace(mode);
e Here can be GL. BACK,GL_FRONT,

GL _FRONT AND BACK.GL BACK
eliminates back faces.

e To end this culling use:
glDisable(GL_CULL_FACE);



OpenGL Depth-Buftfer Functions

e To use depth-buffer visibility-detection, we need to first set it up:
glutlnitDisplayMode(GLUT_SINGLE IGLUT_RGBIGLUT_DEPTH);
glClear(GL_DEPTH_BUFFER_BIT);
glEnable(GL_DEPTH_TEST);

// do stuff
glDisable(GL_DEPTH_TEST);

 To set up OpenGL to use wireframes can use
glPolygon(GL_FRONT_AND_BACK, GL_LINE);

 To use depth cueing can do:
glEnable(GL_FOG);
glFogi(GL_FOG_MODE, GL_LINEAR);
//do stuff
glDisable(GL_FOQG);



