
More Visible Surface Detection

CS116B
Chris Pollett

Mar. 16, 2005.

Outline

• The A-Buffer Method
• The Scan-Line Method
• The Depth Sorting Method
• BSP Trees, Area Subdivision, and Octrees
• Wire-frame Visibility Methods
• OpenGL Visibility Detection Functions

The A-Buffer Method
• Extends z-buffering, so get anti-aliasing and can handle non-opaque

surfaces.
• Developed at Lucasfilms.
• ‘A’ is for accumulation.
• Each position in the buffer can now reference a linked-list of surfaces.

This allows blending for transparency and anti-aliasing.
• Each position in the A-buffer store a real number for depth type and a

pointer to surface info.
• A positive value indicates only one surface contributes, a negative

value means to expect a linked list.
• Surface info includes RGB values, opacity, depth, percent of pixel

covered, surface identifier, etc.

The Scan-Line Method

• Scan line by line through image.
• Use polygon tables, figure out intersection of scan with edges of

polygons.
• Have flag that keeps track of which polygons are relevant. At a left hand

intersection this flag is turned on and at the right hand side it is turned
off.

• Compute depth values if on, to figure out what color to draw that portion
of line.

• Can work out next scan line incrementally from the current scan line
• Cyclic overlaps can be handled by subdividing the relevant polygons.

Scan Line 1
Scan Line 2

Depth Sorting
• The depth sorting method:

– sorts surfaces based on depth
– surfaces are scan converted in order starting with the surface of

greatest depth.
• This is sometimes called the painter’s algorithm.
• Cycles through surfaces S one by one.
• If the depths of S and some other surface S’ do not overlap (Fig 1), S’s

position in order is left unchanged.
• If overlaps occur, then check (a) bounding rectangles of S and S’ in xy

plane - if no overlap leave unchanged. (b) if complete overlap make
nearest object later in list (c) if edge projections overlap might reorder
which to draw first. -- The algorithm is not perfect (might get loops, so
might subdivide).

z

x
y

Fig. 1 z

x
y

Fig. 2

BSP Tree, Area Subdivision, and
Octrees

• To use BSP trees for objects visibility:
– Insert objects into BSP tree according to planes, P1, P2, etc. Each

plane has a front and a back and in tree this corresponds to a left or
right pointer.

– When we draw, we traverse the tree going down left edges first
then right edge then parent. We render surfaces at leaves when get
to them.

• Similar, idea works with octrees.
• Area subdivision is a similar technique applied to the view-plane area.

Essentially split view plane recursively into quadrants until each
quadrant is either a single surface, has no surface, or is one pixel in
size. Then render quadrants.

Wireframe Visibility Methods
• Procedures for determining object edges are referred to as

wire-frame visibility methods, visible line methods, or
hidden-line detection methods.

• Two common techniques are wire-frame surface visibility
and wireframe depth-cueing.

• In the first we compare endpoints of each edge with
surfaces in scene. If both endpoints are in front or behind a
surface, then easy. Otherwise, need to calculate point of
intersection with surface to determine what to render.

• In the second technique, we adjust the color of line
according to the function: fdepth(d) =(dmax-d)/(dmax-dmin).

OpenGL Visibility Detection
Functions

• To eliminate back faces, we use the OpenGL
functions:
glEnable(GL_CULL_FACE);
glCullFace(mode);

• Here can be GL_BACK,GL_FRONT,
GL_FRONT_AND _BACK. GL_BACK
eliminates back faces.

• To end this culling use:
glDisable(GL_CULL_FACE);

OpenGL Depth-Buffer Functions
• To use depth-buffer visibility-detection, we need to first set it up:

glutInitDisplayMode(GLUT_SINGLE |GLUT_RGB|GLUT_DEPTH);
glClear(GL_DEPTH_BUFFER_BIT);
glEnable(GL_DEPTH_TEST);
// do stuff
glDisable(GL_DEPTH_TEST);

• To set up OpenGL to use wireframes can use
glPolygon(GL_FRONT_AND_BACK, GL_LINE);

• To use depth cueing can do:
glEnable(GL_FOG);
glFogi(GL_FOG_MODE, GL_LINEAR);
//do stuff
glDisable(GL_FOG);

