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Introduction

• Ellipse Generating Algorithms
• Conics and Splines
• Parallel Curve Algorithms
• Pixel Addressing
• Fill-Area Primitives



Ellipse Generating Algorithms

What is an ellipse? Given two foci: F_1=(x_1,y_1) 
and F_2=(x_2,y_2) in the plane and a poin,t (x,y), 
let  d_i be the distance from F_i to (x,y) for i=1,2. 
The ellipse based on these foci is the set of points 
such that:

d_1+d_2 = constant

Using equations for distance this gives:
[(x-x_1)^2+(y-y_1)^2]^{1/2}+[[(x-x_2)^2+(y-

y_2)^2]^{1/2} =constant



More ellipses

• So can specify an ellipse by giving F_1,F_2 
and one point on the boundary. With these 
we could determine what the constant was 
and then start drawing the ellipse by varying 
the x value and seeing what y evaluates to.

• This would be slow.
• If the ellipse is oriented on the x-y axes can 

do midpoint-like algorithm.



Still more ellipse

When oriented on the x-y axis the equation of an 
ellipse can be written as:

[(x-x_c)/r_x]^2 +[(y-y_c)/r_y]^2=1
Where:

Or more simply: x=x_c+r_xcosθ, y=y_c+r_ysin θ

(x_c, y_c)
θ

r_y

r_x



Midpoint Ellipse Algorithm

Suppose (x_c, y_c) = (0, 0). Start at (0,r_y), 
move clockwise. Let 
f_{ellipse}=r_y^2x^2+ r_xy^2-r_x^2r_y^2

Then f_{ellipse}>0 if (x,y) is outside the 
ellipse, <0 if inside and =0 if on the ellipse.

So can use this as our decision  function. 



More midpoint ellipse algorithm

Have to be careful about when the slope has 
magnitude less than/greater than 1. Break the first 
quadrant into regions. One where the magnitude of 
slope less than 1, in which case step x by 1; the 
other region where the magnitude is >1 in which 
case step y. 

Using derivatives can determine boundary between 
two regions given by when:

2r_y^2x  = 2r_x^2y.



Still more midpoint algorithm

In region 1:
p1_k = f_{ellipse}(x_k+1, y_k-1/2).
In region 2:
p2_k = f_{ellipse}(x_k+1/2, y_k-1).
Again, these can be incrementally computed 

in terms of previous k values starting at 0.



Conics and Splines

Note midpoint idea can be extended to general 
curves of the form f(x,y)=0. Such gives are said to 
be implicitly given. This is as opposed to curves 
with an explicit representation: y=f(x). Note: if 
have latter can always convert to former. 

As an example consider a conic section given by:
Ax^2+by^2+Cxy+Dx+Ey+F=0.



More Conic Sections and Splines

Discriminant determines type of section:
B^2-4AC <0 => ellipse, >0 => hyperbola, =0 

=>parabola.
These curves useful when doing graphics for 

physical simulations: planetary motion, 
objects falling, charged particle systems.



Polynomials and Splines

Polynomials are given by equations of the form:
y=a_0+a_1x+ …a_nx^n
(Above curve said to be degree n)

Splines are given by equations like:
x=a_0+a_1u+ …a_nu^n
y=b_0+b_1u+ …b_nu^n

At this point I discussed LaGrange Interpolation on 
the board



Parallel Curve Algorithms

As with Bresenham can modify the circle and 
ellipse midpoint algorithms to work in 
parallel. Need to calculate the starting 
(x_k,y_k) and p_k values for each 
processor. Can show this can be done with 
minimal overhead.



Pixel Addressing

How does a point (x,y) correspond to a pixel on the 
screen.

In particular, each pixel has some width and height.
If use grid-coordinates then the point (x,y) 

corresponds to the screen rectangle given between 
(x,y) and (x+1, y+1).

If want to maintain geometric magnitudes should 
address draw only pixels interior to the object.



Fill-Area Primitives

• How do we draw interiors of object? These 
are called fill areas. Will discuss methods 
on Monday.
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