From Ellipses to Fillings

CS116A

Chris Pollett
Sep8, 2004.

Introduction

- Ellipse Generating Algorithms
- Conics and Splines
- Parallel Curve Algorithms
- Pixel Addressing
- Fill-Area Primitives

Ellipse Generating Algorithms

What is an ellipse? Given two foci: $\mathrm{F}_{-} 1=\left(\mathrm{x} _1, \mathrm{y} _1\right)$ and $\mathrm{F}_{_} 2=\left(\mathrm{x} _2, \mathrm{y}_{-} 2\right)$ in the plane and a poin, $\mathrm{t}(\mathrm{x}, \mathrm{y})$, let d_i be the distance from $\mathrm{F}_{-} \mathrm{i}$ to (x, y) for $\mathrm{i}=1,2$. The ellipse based on these foci is the set of points such that:
d_1+d_2 = constant

Using equations for distance this gives:
$\left[\left(x-x _1\right)^{\wedge} 2+\left(y-y _1\right)^{\wedge} 2\right]^{\wedge}\{1 / 2\}+\left[\left[\left(x-x _2\right)^{\wedge} 2+(y-\right.\right.$
$\left.\left.y _2\right)^{\wedge} 2\right]^{\wedge}\{1 / 2\}=$ constant

More ellipses

- So can specify an ellipse by giving F_1,F_2 and one point on the boundary. With these we could determine what the constant was and then start drawing the ellipse by varying the x value and seeing what y evaluates to.
- This would be slow.
- If the ellipse is oriented on the $x-y$ axes can do midpoint-like algorithm.

Still more ellipse

When oriented on the $x-y$ axis the equation of an ellipse can be written as:
$\left[\left(x-x _c\right) / r_{-} x\right]^{\wedge} 2+\left[\left(y-y _c\right) / r _y\right]^{\wedge} 2=1$
Where:

Or more simply: $\mathrm{x}=\mathrm{x} _\mathrm{c}+\mathrm{r}_{-} \mathrm{x} \cos \theta, \mathrm{y}=\mathrm{y} _\mathrm{c}+\mathrm{r} _\mathrm{y} \sin \theta$

Midpoint Ellipse Algorithm

Suppose (x_c, y_c) = (0, 0). Start at (0,r_y), move clockwise. Let $f_{-}\{$ellipse $\}=r_{-} y^{\wedge} 2 x^{\wedge} 2+r_{-} x y^{\wedge} 2-r_{-} x^{\wedge} 2 r_{-} y^{\wedge} 2$
Then $f _\{\text {ellipse }\}>0$ if (x, y) is outside the ellipse, <0 if inside and $=0$ if on the ellipse.
So can use this as our decision function.

More midpoint ellipse algorithm

Have to be careful about when the slope has magnitude less than/greater than 1. Break the first quadrant into regions. One where the magnitude of slope less than 1 , in which case step x by 1 ; the other region where the magnitude is >1 in which case step y.
Using derivatives can determine boundary between two regions given by when:
$2 r_{-} y^{\wedge} 2 x=2 r_{-} x^{\wedge} 2 y$.

Still more midpoint algorithm

In region 1:
$\mathrm{p} 1_{-} \mathrm{k}=\mathrm{f} _\{\mathrm{ellipse}\}\left(\mathrm{x} _\mathrm{k}+1, \mathrm{y}_{-} \mathrm{k}-1 / 2\right)$.
In region 2 :
$\mathrm{p} 2 _\mathrm{k}=\mathrm{f} _\{\mathrm{ellipse}\}\left(\mathrm{x} _\mathrm{k}+1 / 2, \mathrm{y}_{-} \mathrm{k}-1\right)$.
Again, these can be incrementally computed in terms of previous k values starting at 0 .

Conics and Splines

Note midpoint idea can be extended to general curves of the form $f(x, y)=0$. Such gives are said to be implicitly given. This is as opposed to curves with an explicit representation: $y=f(x)$. Note: if have latter can always convert to former.
As an example consider a conic section given by:
$A x^{\wedge} 2+b y^{\wedge} 2+C x y+D x+E y+F=0$.

More Conic Sections and Splines

Discriminant determines type of section:
B $\wedge 2-4 \mathrm{AC}<0=>$ ellipse, $>0=>$ hyperbola, $=0$ $=>$ parabola.
These curves useful when doing graphics for physical simulations: planetary motion, objects falling, charged particle systems.

Polynomials and Splines

Polynomials are given by equations of the form:
$\mathrm{y}=\mathrm{a} _0+\mathrm{a}$ _ $1 \mathrm{x}+\ldots \mathrm{a} \mathrm{n}^{\mathrm{n}} \mathrm{A}^{\wedge}$
(Above curve said to be degree n)

Splines are given by equations like:
$x=a _0+a _1 u+\ldots a_{-} n u^{\wedge} n$
$\mathrm{y}=\mathrm{b} _0+\mathrm{b} _1 \mathrm{u}+\ldots \mathrm{b} _\mathrm{nu}^{\wedge} \mathrm{n}$

At this point I discussed LaGrange Interpolation on the board

Parallel Curve Algorithms

As with Bresenham can modify the circle and ellipse midpoint algorithms to work in parallel. Need to calculate the starting ($\mathrm{x} _\mathrm{k}, \mathrm{y} _\mathrm{k}$) and $\mathrm{p}_{-} \mathrm{k}$ values for each processor. Can show this can be done with minimal overhead.

Pixel Addressing

How does a point (x, y) correspond to a pixel on the screen.
In particular, each pixel has some width and height.
If use grid-coordinates then the point (x, y) corresponds to the screen rectangle given between (x, y) and $(\mathrm{x}+1, \mathrm{y}+1)$.
If want to maintain geometric magnitudes should address draw only pixels interior to the object.

Fill-Area Primitives

- How do we draw interiors of object? These are called fill areas. Will discuss methods on Monday.

