| B
—

PIC 10B

PROFESSOR POLLETT

FALL 2000

= = Fall 2000

: Copyright 2000

PROGRAM IN COMPUTING 10B
PROFESSOR POLLETT
SET ¥
SEPTEMBER 29, 2000

Web page for class : hitp://www.math.ucla.edu/~cpollett
Prof. Pollet's OH: MWF 10-11am

1st Hw is already on the web. Due next Friday (Oct.6) for lectures 1 and 2.
Plan for today (9/29/00, Friday): Go over syllabus and talk about classes in C++.

Major difference between 10A and 108

In 10B we will talk about abstract data types which are useful in any language: lists, list processing, various of kind of trees, sorting
algorithms, hashing. We'll also be concerned with the efficiency of our algorithms. So we'll learn about tools to measure this such as O-
notation. '

Classes in C4++ (Ch. 6.2 in Savitch)} .
A class is a C++ construct used to group several related variables. and functions together (this grouping is called encapsulation).

Ex_lostream, ofstream, istream, ifstrcam are classes for input and output. "An example object of type ostream is cout. cout has some member
functions such as cout.setprecision(3);

How do define a class

class EmployeeAcct //Name of class: notice that 1st letter of each word is capitalized.
{public:
-EmployeeAcct(); f/iConstructors say how to make this kind of object.

EmployeeAcct(int amt);
int getAmt();

private:
int amount; //Where data is stored.
b
To create an object of type EmployeeAcct in main or some other function we could do:
int main ()
{ EmployeeAcct a, b(10); /I a is created using 1° constructor: af) is not legal C++. b(10) is created using 2nd constructor.
/! to access info stored in a and b
cout << a. getAmt(j<<endl; Hprints 0
cout<< b, getAmt()<<endl; {fprints 10
}

Dot operator is used to access member variables or functions.

END OF LECTURE Parppprer tt YT T YIS LT LT R AT S AL L AL LS L AL L L L b b s b i A b
OCTOBER 2, 2000

Reminder: HW 1 is due Friday.

Last lecture: talked about classes in C++

Today: We will talk about 1) How to define member functions
2) Difference between public and private
3) ADT's

class EmployeeAcct

{
public:

EmployeeAcct();
EmployeeAcci(int amt);
int getAmi();

private:
int amount;

b

To define member functions:
A EmployeeAcct:: EmployeeAcct() {1 This would appear outside }; ending the class.

/' Two colons are called scope resolution operator.

/I which class we are defining member function of

EmployecAcci::EmployeeAcct(int amt)

{ amount = amt; }
int EmployeeAcct::getAmi() /f int is the return type
{ returm amount; }

Now the class has been defined. An example of how to use the class:

int main ()

{ EmployeeAcct a, b(10); # a uses the 15t constructor
cout << a.getAmt() << end]; {1 b uses the 2nd constructor
cout << b.getAmt() << endl;
return O;

}

on screen: O

10

Public vs. Private

What's the difference?

Public variabies/functions can be accessed by any other object or function.

(Ex) In main above we accessed a's getAmt function

In contrast...

Private variables can only be accessed within the scope of that class

(Ex) Above could access amount when defining EmployeeAcct constructors since within the scope of EmployeeAcct class. It would be a
criminal offense to do this in main since not in scope of EmployeeAcct class

Why bother having the distinction?

Allows us to hide the way we're storing the data internally in case we need to change it. This is called Information Hiding.

More of this in a sec...

First some definitions:
A data type consists of a collecuon of values together with a set of base operations defined on these values.
(Ex) Data type int has ==, +, -, ¥, /...
A data type is an abstract data type (ADT) if the programmer who uses the type does not have access to the details of how the values are
implemented.
(Ex):For data type int you do not know how code for + is actually written.

Classes allow us to define ADT's: what J.Programmer sces is public part.
Private part is how we actually do the implementation.

(Ex) class Date
{ public:
Date(int day, int month, int yr, int calendchype) /t For calendarType 0-Gregorian 1-Julian etc....
Date(int day, int month, int yr); /I calenderType is assumed to be Gregorian.

int getDay(int calType);
int getMonth(int calType);
int getYear(int calType);
- int addDay{(};
void output(int calType);
private:
#f When we write this we have to make decisions about what is stored internally.
{1 We assume information stored in Gregorian format.

2

i
X

e
—

int d;
int m; // Or internally we could have stored just the total number of days since year zero.
int y;

k
Public part is called the interface. Private part is called the implementation.
The point is as long as we write our public member functions correctly outsiders never need to know how we stored things.

Date::Date()

[d=0
m=0;
y=0;

}

/I could define other member functions.

Above cxample does not show how to define ==, +, ¥, etc. Tor an ADT
suppose we had
Date d1, d2(1, 1, 1}, d3(1, 1, 2);
#f then
dl =d2; // statement is legal and it sets date inside d1 to be same as d2
#f Every private member of dl set to corresponding value in d2.
1 if we did
if (d1 == d2) cout << "hi there" << endl;
/f statement is not legal at this point since we have not defined = operator
/! for Date class

END OF LLECTURE *=**$#****#******#*******#*****#***#********#*****ll#*********#*t***#*******

OCTOBER 4, 2000
Reminder: HW1 due Friday. Make sure to get file name right.

Last Day - talked about defining member functions for classes. Talked a little about ADT's. Mentioned operator overloading.
Today - mainly talk about operator overloading. At the end of today we will start talking about separate compilation.

Lastday - we talked about class Date. We said we couldn't do
Date di, d2;

if (d1 == d2) cout << "hin";

yet since == wasn't defined for this class.

To define == for Date ...

class Date

{ public:
friend bool operator ==(const Date& d1, const Date& d2);
: M/ rest of class

b

friend - this keyword means that the function given after it is not a member function of the class, but is allowed access to any private data
stored in objects of this class.
const Date& d1 // & means call-by-reference i.c., get address at where a Date object is stored

1

/imeans we will not change

Now outside of above class definition we'd write ...
boot operator ==(const Date& di, const Date& d2)
{ return (dl.d=d2.d &&
dim=d2m &&
diy = d2.ys
}
allowed access to these private numbers vatiables since this was a friend function of Date.

class Hour /ffclass to store roughly the hour hand from a clock. Stores 0 to 11.
{ public:
Hour();

L

Hour(int h);
int getHour();
friend bool operator =(const Hour& h1, const Hour& h2);
friend Hour operator +(const Hour& hl, const Hour& h2);
Hicould do -, /, %, * this way.
friend ostream& operator <<(ostreamé& out, const Hour& h};
friend istream& operator >>(istream& in, const Hour& h);
private:
int hour;
);
// Let's define member functions
Hour::Hour()
{ hour=0; }
Hour::Hour(int h)
{ hour=h%12; } #/ If entered 23 then output 11th hour.
int Hour::getHour(}
{ return hour; }
boo! operator ==(const Hour& h1, const Hour& h?2)
{ return h.hour == h2.hour);
)
Hour operator +(const Hour& h1, const Hour& h2)
{ return ((hl.hour+h2 hour)%12);
} N
/fbefore defining << and >> let me explain a little.

When we have an expression like
cout << "hi there" << "you";
It's like we'd written (cout <</‘;hi there) << "you";

prints hi there to the screen and returns the cout object.
Then (cout << "you"); is evaluated .
Al

prints you to screen and outputs cout which since no more << operators does nothing.
This kind of evaluation explains prototype for << object.
ostream& operator <<(ostream& out, Hour& h)
-~ -
usually address of cout usually cout thing to be printed
ostream& operators <<(ostream& h)
{ out << "Hour:"
<<h.hour<<endl;
Teturn oul;
}
istream& operator >>(istreamé& in, const Hour& h)
{ int hour;
in >> hour;
h.hour = hour%12;
return in;
}

END OF LECTURE FHedststss stttk e s e st e ke s Sk b kS e R R R kR MR RS Ak kR sk kS Rk bk kR kR R R E
OCTOBER 6, 2000

Last day - talked about operator overloading
Today - separate compilation of files and dynamic allocation of objects and arrays. If have time we will talk about the this pointer.

Separate Compilation

It is often the case that many people work on the same project. We would like to be able to split large programs into several files so that
people working on a project can work independently.

Standard way to do this . . .

Usually split a program based on class definitions.

Ex: Consider the Hour class we talked about last time. We'd put the interface in a file Hour.h and the implementation into a file Hour.cpp.

4

9

Hour.h Hour.cpp

class Hour #include -
{ Hour(); "Hour.h" - ___—}wpreprocessor directive to prepend Hour.h to this file
vee Hour::Hour() R
I) { Hcode
& : }
"other member functions

Anyone who wants to use the Hour class tells the compiler by putting #include "Hour.h" at the start of their file.

Someones.cpp

#include
"Hour.h"
If their code

Why do we separate the code for the interface and implementation into two files?

Idea is that the user of class does not need to know the details of how class is implemented. User just needs to know member functions and what
they're supposed to do. Also looking through a file with only the interface is easier to do than looking through both interface and
implementation.

One problem with this setup . . .

Userl.h User2.h
#include itinclude J// Could end with two copies of Hour.h in front of file that gets compiled.
"Hour.h" “Hour.h" {1 Causes an error. ’
#include
"Userl.h"

We'd like Hour.h to be smart enough to "know" if it's already been loaded.
To make Hour.h smart use #ifndef

Hour.h

#ifndef HOUR_H //preprocessor flag
#define HOUR.H // here says flag has been defined

class Hour
{ /N ourcode
| '

#endif // end #ifndef HOUR.H

Dynamically Allocating Arrays and Objects
Why do we want to do this? Sometimes we would like to set size of an array at Tuntime or create an object at runtime.
To do this for objects. . . .

Ex. Hour *h; /{ creates a pointer to an object of type Hour, i.c., h can
/f store the memory address of where something of type
/! Hour lives. “
h=new Hour(); / creates at runtime an object of type Hour using default
/I constructor
/To use member functions of this object could do things like:
wcout<<h—getHour()<<endl; // prints 0 to the screen
T
{/Same as (*h).getHour();
//(*h) means object stored at address h.

//When we're done using this object we free up memory by doing . . .
5

—
iy

ot

delete h; // frees memdry used by h. If h has a destructor call it.
To do this for arrays . . .

Ex int *myarr;
int size;
cin >> size;
myarr = new int[size}; // Creates-an array of size many ints, returns its
// location to myarr.
/ITo set a value of this array
myari[4]} = 6; // Sets 5th element since we start counting at 0.

/ithis is equivalent to

*(myarr + 4) = 6; //move over 4 ints from n and store 6.
/To get rid of this array when done . . .

delete[] myarr; /fsays we're deleting an array

Like to start writing class to illustrate what we've talked about.
#ifndef ARRAY_H .
#define ARRAY_H
/ class for dynamic arrays
class Array
{ public:
Array(int s); -/ allows us to create an array of size s,
Array(); /! default array size is 10.
Array(const Array& amr); // copies arr into current object. Called
// a copy constructor
~Amay(); // destrucior frees up memory used by object
Array& operator =(const Array& rhs) // overloads = so that copies dynamicaliy allocated
/f array properly. Notice this is a member function
/f not a friend function

/] other methods
private:
int *array; // where the data is stored
int max; // how big array is.
B
#endif

END OF LECTURE AND SET #1 #+5E¥%¥aekhdkhkkbrkehdrsserhkssbrbrsrdbbbbbetebkeestbkrkbbbhbross

=S Fall 2000

Copyright 2000

PROGRAM IN COMPUTING 10B
PROFESSOR POLLETT
SET #2

OCTOBER 9, 2000

Reminders: HW 2 is on the web. Section 2C now meets Bunche 3150. HW 1 solutions are posted.
Last day-Separate compilation. Started on'example of separate compilation that also was going to give an example of the pointer.

#ifndef ARRAY_H
#define ARRAY _H
class Array
{

/f stuff
b
#tendif

Today-We will implement Array class. Talk about = overloading and the this pointer. We will also begin doing algorithm efficiency analysis.

HTo implement Array make a tile called Array.cpp *
#include<iostream.h> c

#include<stdlib.hx> Hfor exit()

#include<stddef h> /ffor NULL constant

Array::Array()
{ max=100; fidefault array size
array=new int[max];
if (array=NULL) /fascertain if memory really got allocated
{ cout "Error: not enough memory";
exit (1);
}
}
Array::Amay(int s)
{ ‘max=s;
array=new int[max];
if (ammay== NULL)
{ cout << "Error: not enough memory”;
exit(1);
}
)
Array::size()

{ return max; }
Array::Array{const Array& arr) //copy constructor: argument is an array we are going to copy
{ max=arr.size();
array=new int[max];
if (arry == NULL) { /fsame code as before }
for (int i=0; i< max; i++) array[i] = arr.arryfi];
}
Array::~Array() //destructor is called when we delete an array.
{ delete]] array; }
Array& Array::operator ={(const Array& ths)
{ {fthis is a member function not a friend
if (this == &rhs) //"this” pointer is always a pointer to the current object. Left hand size of the operator is what this refers to.
{return *this;} /fSo in a=b this refers to object a. .
/ equals has a return value. That way, expressions like a=(b=c) makes sense. Also if (a=b) means set a equal to b then use the value of a in if
/! condition.

. : F

// now we handle a case where two sides of equality not the same
else
{ delete[] array;
max = rhs.size();
array = new int[max];
if (array == NULL) { //same code as before }
: for (int i=0; i<max; i++) array [i}=rhs.array[i];
)
}

/fother member functions code

Then in a new file myFile.cpp we could use above class.
#include <iostream.h>
#include "Array.h"
int main{)
{ Armay a(10), b; c(a);
T

Huses default- constructor / uses copy constructor

c=a;... elc.

If uses overloaded =. ¢ has same value as a but not same address, thus else clause is evaluated because conditional expression of if clause is
/ffalse.

)

Can also do other oprator overloading with member functions.
ex. class A
{ A& operator +(A& b); /f left hand side is passed using this.

}
int main ()
{Acd,
cout << c+d;
J o

#/ There is a reason you might not want {o do the above for +, but uise friend function instead: Often times you would like to say what adding an
/finteger constant to ¢lass means.

fffor example, suppose you have a class RealNumber. Then if 2 is a real number, a+10 makes sense. But if overload + as a member function

{f a+10 will make sense whercas 10+a won't.

END OF LECTURE ********#******#*'****#***#********#**#****#********************#***********

OCTOBER 11, 2000

Made some corrections to HW?2 yesterday. Prof. Polleit notified students by email. Send Prof. Pollett on email if you didn't receive one from
him.

Last Day - talked about the this pointer and overloading + operator
Today - mention some things about copy constractors and start talking about now to analyze algorithms.

Copy Constrictors
copy constructors can be explicitly called as in...
Array a, ©(a); ¢« /fcopy constructor explicitly called for object c.
On the other hand sometimes copy constructors called automaticaily.
Ex. Void MyFunction(Array b) & /fcall by value
{ /fsome code

}

int main ()}

4 Amay a(10)
MyFunction{(a);
return 0,

}

fiwhen b is created the copy constructor is used to copy a's value into b.

/if you don't have a copy constructor then b is given the same rcference as a. This can cause problems as the destructor b called when
/MMyFunction. So also a's will be called as same. '

#/So important to have a copy constructor!

Here's another situation where this comes up.

%

Armray Function2()
{ Amay b(10);
return b; « /fjust before b gets deleted (since it's a local variable).
} ficopy constructor called and the object created is what comes back from return.

Analyzing algorithms
ex. consider a situation similar to HW2. We want to have a dynamically sized array and have an operation + which allows us to add one integer
to what's stored in the array.

ex. inital array

1/ 1ast place where we've stored stuff
/! now if we add 5 to array we change our dynamic array 10

D index = 0
+5)

[5 index = 1

e

Hif we want to now add 6 to this array our ADT will handle this by dynamically creating a new larger array by copying the contents of our old
ffarTay into new array, adding 6 to the new array and deleting old array.

/fHow big should the new array be?

HLet's say we just increased its size by 1, then

Sl index =2 /I we've copied 1 element to make this array from old array.
/f if now we add 3 we would get

ll 5 I [’ 3 index =3 // we've copied 2 elements in going to this array from previous array.
A

1/ generalizing, if we add n elements then how many copies do we make totally?
of copies = 1+2+3+..+@0-2)+{n-1) = L;hl-= n*

ffroughly, n’ish many copies.

//Since # of copies determines the speed of the algorithm, we ask if we can do better?

fiAnswer: yes, we can do beiter if when we resize array we create an array twice as large as the old array.

ex.{1]| index=1

d+5
SER)
/#if we now add 6
115 l 6 l index=3 /inow only resize if index=size of array
-2 g 1]5] 6 I 3 index=4) /fno copies were made in this step.

{f we add in 2

| 1]s]s 3]2] index=5

Hso if we add n elements how many copies will we make?

/ffirst how many times did we increase array size?

//Biggest the array gets is at most twice the number of clements inserted

/fArray size is a power of 2. So number of times we double is the least x such that 2°>n
/1s0 2°=n if x=log,;n. So 2" is greater than n where x=[log,n]

Jfso the number of copies we do with this scheme is bounded by

142427, 4200800
H=(142+2%..+210080 5y,
f1=2e20.. 200801 pllogndy g 5 g2 pllognl-ly

n=2lo8lly oy

firoughly n which is smaller than n’ish (the speed of the first algorithm)

tfso second algorithm is better

Isecond algorithm is used in vector class in STL (standard library)
. 3

9

END OF LECTURE #t sk stn sttt s etk n b sk ket r bk bt bk kA bRk hrr i d b kb e AR AR SRR R kg
OCTOBER 13, 2000

Added a bonus problem to HW2. Bonuses are worth 1 point each and are added on top of your curved final grade.

Last‘day - We analyzed some algorithms for dynamically sized arrays.
Today - We will talk more about analyzing algorithms and we will talk about growth rates of various computer science functions.

How to figure how good is an algorithm.
One way...

Empirical analysis
Figure out algorithm behavior by running a program. Implementing it on various kinds of inputs (like software testing).

Three types of test data

i. Actual data - data similar to what will occur for your applications of the algorithm.

2. Random data - randomly generating inputs to your algorithm.

3. Perverse or adverserial data - data desighed to make algorithm as inefficient as possible.
Problem with empirical analysis is that it can be very machine and operating system dependent.

Another approach is...
Comparative analysis
Compare different algorithms for same problem based on the number of times certain they use certain base operations. Ex. copying one
element from an old array to a new one. As with Empirical Analysis, we can compare algorithms on worse-case or adverserial inputs or on

average-case inputs. 5o to do this kind of comparative analysis, we need to understand how to compare growth rates of various functions
of input.

ical growth rates one sees in Computer Sciemn
1 - cost of one base operation (constant time).

log N - (log in computer science is always base 2 since we're dealing with binary numbers). log N is roughly the length of N written in binary.
log2=1,1og1=0,log5>2 (since log 4 = 2)

Ex. Search for a number less than N using only questions of form, "Is number bigger than x?"

Number of steps to find number x log N,

N - linear growth
Ex. Scanning a file of length N takes N reads

N log N - it had to do binary search as in log N example N times.
N - two rested for loops of same size
N? - three rested for loops of same size.
2" - look at all possible sirings of length N and do something with them.
Drawing a Ricture of liow these functions look like:
¥ 2 NN NiogN
logN

— |

— X
Fractions don't exist in computer science world.
Ex. [x]} - round x down

[2.5]1=2
[x] - round x up
[25]=3

Ex. flog,""] = || (length of x)

Estimating function growth rates with using integrals. '
The Harmonic Series Hy=1+ 172+ 1/3+ /4 + ... + /N

R Value of #in is 4ve sum of dhe areas in Jhe boxes .

N
1
So lower band is given by f ;dx =log N
' 1

Infact, Hy=InN + ¥+ T;—N Where v is Euler's gamma constant approximately 0.5d,d,...

Ex. 2: Consider function N! = N(N-1) ... 1
To get a lower bound note:

N
N
mN!:EmiZflnxdx=NlnN—N
i=1 1

Actually, Stirling's Formula says InN! = NinN - N + InV27n

3 S0 N!zeﬁinN-N+an2!l_l”‘.

Big O Notation

In computer science we usually only care about the asymptotic behavior of your function.

If runtime is 7N+3, the +3 doesn't really matter compared to 7N on large inputs.

Mainly it's the fastest growth rate term which most influences runtime of algorithm.

Big O notations give us a way to measure just this largest term.

Definitjon: 0(f(N)) is the class of functions g such that these exists a constant K such that g(N} = Kf(N) for all N 2 N, for N, fixed.

Ex. 1: 7€ 0(1)

Proof: Choose No =1, k=7, then Nzl 7<71
Ex.2: TN+ 3 € O(N)

Proof: Choose No=1,k=10,then 7+ N+ 3<10NN=1

END OF LECTURE AND SET #2 Rk Rk kR R R Rk R R R R R R R R R R Rk R E R R R R R R TR R kR R R R R AR R R R

= Fall 2000

. Copyright 2000

PROGRAM IN COMPUTING 10B
PROFESSOR POLLETT
SET #3

OCTOBER 16, 2000

Remember HW2 is due Wed. Prof. Pollett will try to get students a practice midterm by Friday.

Last day-talked about math stuff
Today-will talk about big O-notation and recurrence relations.

Big O-notation
Definition: A function g(N) is in the class O(f(N)), i.c., g(N) € O(f(N)), if there exists ¢,, N, such that g(N)<cf(N) for all N>N,

The point of big O-notation is it tries to capture the runtime of algorithms in a machine independent way. If we have an algorithm that
performs N” + N operations, the N* part of the algorithm will be most important to improve the speed of.
ex. show Ne Q(IN>-7)
Let's take c;=1 and take N =3
Clajm for all N>N,, N<c,(N*-7) = N7
Proof (by induction):
Base case: N=4 then 4<16-7=9 is true
Inductive step: Assume N<N°-7 to prove that N+1<(N+1)>-7
N+1)-7=N%42N+1-7
> (NET+1
> N+1 by the inductive hypothesis
Thus N<N>7 for alt N>3

General facts about O-notation

1. O(1) cOM)

2. O(NY c O(NMyifk' 2k

3. 0D + O(g) = O(f+g)

4. ¢ O(f) = O(f) where c is a constant
5. O()O(g) = O(f+g)

6. O(D+0(f)=20(f)

Ex. show

x+x+x'€ O(x)

x+x+x’€ O(X)HO(xH+0(x") by 2
O(xH+OH)+0(x e O)+O0)+0(x*) by 2
O0eN)+0H+ON=30(x" by 6

30(x") = 0(x") by 4

Thus x+x*+x'e O(x")

Ex, N' 2 O(N) .

Arguing by contradiction assume N’ € O(N). Then there exists C,, N, such that N* < C,N for all N>N,. Take N=max(C,, Ny) +1. Then
N*=(max(C,, No+1)* > C, (max(C,, Noi+1)=C,N but that contradicts our assumption that N> < C,N. Thus if we assume N* € O(N) that leads to a
contradiction. Hence N’ # O(N).

Other useful facts:
1. O(log N) :'_—”O(N) (ESF if E is a proper subset of F ie. ECF,E#F)

2. ONY f O(m®™) for k, m fixed

Ex. N € O(2") is true by 2 which says O(N*) f O(m™) for K=3, m=2

How we can manipulate O in an expression (we can pretend it is like a constant).

N 1
Ex. show N~ 1+0§
N+l:)(1) is a class of functions, 1+0(1§) is a class of functions.
To show _N+l;{1) = 1+0(1§) we have to show (a) and (b) are true
N 1 N 1
<
(a) N+O(D 2 140 ® 3 T 1+06Q)
(a) is easy to see
N___ et
N+O(1) NO(1)
=1+ L
OMHO()
= lo——
oM
. 1 1
Claim: = 0(?

END OF LECTURE *************#*************#*********************#**************#**********
OCTOBER 18, 2000
HW?2 due today. HW3 on web. HW1 has been retumed; 1 week period starting from 10/18/00 for regrades.

Recurrence Relations
‘We can often bound the number of operations for an algorithm on inputs of size N as a function of number of operations required on smaller
‘instances. '
Ex N numtber of copies made for n inserts into a dynamic array.
If resized array one bigger than old array . . .
Cy = Cy, + N « recurrence relation
Recall C,=N+N-1+Cy,
=N+N-1+N-2...+3+2+1
_ NN+ D

: - 2
1 1
Al
=0
Ex [f resized the array by doubling . . .
Cp=Cy+ NwithC, =1, for N a power of 2.
So for C, between N and 2N C_ =Cy
SoC_sC ,+m2
C.s£C_,+ m2 + m/4
£Cp+ M2 + m4 + mfd
To solve for C,, in closed form . . .
Let m = 2°, then
C,=Ca<Cpt 2™
Cz‘ samz + 2n-l + 21»2
Cl=("+22+...+ 12D
=2"-1
= 0(2%)
=0O(m)

Another very common recurrence relation is the Fibonacci sequence defined as
F,=0

F,=1

F,=F_,+F, nz2

2

i

To solve for F, in closed form, let o= Y F x". Then notice if
n=0
youtakea-qx-ax’:(F,,+F,x+F,x2+...)-(Fox-le2+...)-(F0x2+....)
=F+F -F)+0+0x' +....
=x

Soo(l-x-x)=xea= =
l-x-x

Express T T x . 2 Taylor expansion and match F; with ith coefficient you will get F, ﬁ 1+‘IEJ ﬁ_

Solving for the Fibonacci sequence in closed form will not be on the test.
We'll only consider linear recurrences in this class.

Ex Cy=2y,+ N ¢ only depends on one previous instance
.This recurrence might come up with an algorithm ltke merge sort

LetN=2"
2I:I=2(:2I'l-l"_2ﬂ
=2(2C," 2+ 2" + 2
=40+ 24+ 2"
=2"+2"+. .+ 2"
n times
=n2"
So O((logN)N) since n2° = (logN)N because N = 2°
ExCy=Cy +1 :
LetN=2"
Cp=Com +1
=Cap2+14+1
=14+1+1...+1
n times
=n

So O(n) = O(log N) because N = 2",

Let's start analyzing Algorithms
Ex Sequential Search
Imput: afl]... afrl,1<r
Problem: Fmd i such that a[i]==value. If it doesn't exist return - 1
int search (int a[], int value, int 1, int 1}
{ for(int i=l; i<=r; i++)
if(vahre==a[i]) return i;
‘return -1;
}
This algorithm's runtime will vary depending on the array.

[EIE]

If search for 1 it takes only 1 check.

.- N+1
Theorem: Let N be the size of array. I all locations equally likely, then sequential search examines on average—2 numbers on successful
searches and N numbers on unsuccessful searches.

Proof: Probability of looking at i numbers is Iﬁbut we have to do i steps in this case. Average number of steps to look is

1 1 1 N
1N+¥+3N+...N
N
1 Ei =l N(N + 1) =N+1..0(N)
o 2 2
1=

END OF LECTURE kR kk ko k Rk Rk kR kR kRN R R FhE Rk ke kR kR kM ko sk ok kk R kR Rk kR kR Rk ek E

OCTOBER 20, 2000

" HW3 is up. Practice midterm is up. HW2 solutions available later-today.
. 3 .

f iy

Last day - Talked about recurrence relations. Analyzed average runtime for linear search.
Today - Analyze another algorithm arge, argv.
Then start talking about the list ADT.

More of analyzing algorithms

Consider the problem that we would like to make an array a such that alif=1iti is a prime and O otherwise.
(A prime is an integer, whole only divisiors are 1 and itself)

We will use so called sieve of Eratothenes.

We'll produce an array for numbers less then...

#include<iostream.h>
Static const int N=1000 // N is how big a is.

int main(}

{ ti, a[N];
af0l =0;
a[l]l =

for (int i=2; i<N; i++)
afil=1; /fassume all numbers <N are prime to statt
for (int i=2; i<N; i++)
{ if¢afi]=1)
{ for(int j=i; j*i<N, j++)
a[*j1=0;
JAif a[i] is still a prime, set ali of its multiples to be not
/I prime
)
1
for (=2; i=N; i++)
if(afi] = 1) cout <<i<<™n; //print out our primes

} /fend main

passl 2 3
a[0j0 0 O
affje o0 ©
a[211 1 1
a3t 1 1
a[4]1 0 0O
a[511 1 1
al6el]l 0 O
a[711 1 1
a[l8]1 0 O
a9j1 1 0

What's the runtime of this algorithm as a function of N?
1st line takes constant amount of time. O(1)Time
1st for loop we do = N assignments
each assignment takes some constant amount of time NO(1) = O(N) time
2nd loop done N times and it's nested for loop does
first N/2 assignments then N/3 assignments then N/S assignments...
So 2nd for loop takes N/2+N/3+N/S+N/T+1/11+...

Y

p prime
p<1000
1

a3
1 1

=1 i=1

N+1

< f%dl = (N+DIn(N+1)
1

Final for loop prints to screen N times O(N) € Q(NlogN)
O() + O(N) + O(NInN) + ON) = O(NInN)

arge, argv
Say we want to run our program from command line and we want to pass a value to our program that sizes an array.
i.e., if under DOS or Unix

> myprog 1000 //supposed to tell your program that amay size should be 1000,

{fmyprog

int main(int arge, char* argv[)

/1 # of command line inpuis {farray of strings
{ inti, N = atwi(argv[il); //atoi converts ascii string to integer
4qnt *a = new int[N}; /#size array according to N.

}
myprog 1000 hi
{// then argc = 3
Hargy[0]="myprog"
I argv[1] = "1000"
Hargv[2] = "hi"
Linked Lst

Definition: A linked list is a set of items where each item is a part of a node that contains 2 link to a node.

nede /._")f_d‘f\

link e another j' ‘
e node Hemn

END OF LECTURE AND SET #3 e i L T Y L T STty

-——emp-ia link

Fall 2000

PROGRAM IN COMPUTING 10B
PROFESSOR tw Polle
SET #4

OCTOBER 23, 2000

midterm on Friday in class. Remember to bring photo id
Last day-started talking about linked lists. Talked about argc and argv
Today-Talk about linked lists

Typo correction
arge argv
T _ T
number of command line sirings array of command line strings
If command line was
myprog hi there
Harge =3
Hargv[0]=myprog
[targv[1)=hi
{largv[2]=there
Linked Lis
definition: a linked list is a set of items where each item is a part of node that contains a link to a node

(Recursive Data Structure)
node | link rede
" —— -
1 \-—-——9 \ @/—m—ll peintec ends liste
l_\i.l(m - .
neod slork list
Some_types of lisis

1) standard singly-linked list
H —2 14 —5 |\
n] 1= P el |
{
heod
2) circularly linked list
1 — Fe >~
_

heodd
3) doubly linked lists

l% = T P - - a2 [Ty ot vo et

—

e 1

T
head has no each node has a pointer to a
previous node next and previous node

Advantage: can back up in list
Disadvantage: more memory to implement

In class we will follow book and implement using structures. For HW use classes.

=

Copyright 2000

Code for a Node

typedef int Item; /fmow item type can be used (will mean same as int)
struct node {Item item, node *next};

/hwhy recursive as refers to self. Just an address so we don't need to know what a node is to define a node
typedef node *link;
€x. creating a list
link head=new node(0, NULLY);
link x;
x=head; //now x points to same node as head
Xx—item=4; //same as (*X} item=4 which sets item in x to be 4.
ffwould also change head's item
x—¥tem=new node(3, NULL);

————) }
FIN g EXEN
K

x—next—item=5; //would change picture to...

(- 1

X
ffean also do
x—next—next=new node(2, null); //would look like

——————

‘[\ _—"9 .Si l"_7 i.z‘cl
List operations
suppose we want to go through a list performing some operation on each item in list. Could do this with the following code...
for(link t=x; t '= NULL; t=t—next)
visit (t—item); /f/visit is code we wish to perform on each item.

rp—

X
3l 1= 2] =1s]-]
{u/’ ' /’
::"" . -
How to reverse the order of a list
i.e. change

]l d= s
"”——-—I""@J-’]

Link reverse (link x)
{
link t, y=x, =NULL,
while (y '=NULL)
{ t=y->next;
y—>next=r;
=y;
y=0

return r1;

\711_\-* {2l b= lsl |

=NULL

1st pass

XepMul

yemuLl
If | =11 75 i so get lslfP’ R = ATIN!
‘ M
we now re@r E_-l—-D ‘I_i—-’ I’I‘

other operations
link head;
Initialized list: head=NULL;
Insert t after x: it (x==NULL)
{ head=t; head->next=NULL; }

else i
{ t->next=x->next;

X->next=t;
]

test if empty: if (head==NULL)

Remove after x

D_l_’ l#“"‘? ﬂ_l—> .o

- - oa e

t=x->next;
x->next=t->next;
delete t;

END OF LECTURE **************#*********#**#********##*****************#*********##********

OCTOBER 25, 2000

Midterm is on Friday. Closed books, closed notes. You must have photo LD. Prof, Pollett will take 2 points off midterm test score if you begin
test early or end test late. No baseball caps during testing.

Practice Midterm
(1) Define the following

(a) Copy constructor - is 2 member function of a class that takes as an argument an object, say o, of that class and produces a new object of
this class, say O,, such that O, has all its member data is the same as 0. Copy constructor can explicitly invoked by the programmer or is
invoked when returning objects of this class by value or when instantiating call-by-value object of a class.

MyClass fim()

} MpyClass a;

return a; // copy constructor evoked

)
Void fun2(MyClass 6)
1] " 3

{} copy constructor called
int main ()
{ MyClass a; fun2(a); }
(b) friend function - 2 nonmember function of class which has access to a class' private data. Not called by runtime sysiem.
(¢) destructor - a member function of an object used to free up what memory it uses when we get rid of that object.
'~ MyClass() is name of destructor for MyClass.
Can be called by runtime system. Ex: if object is a local variable and it goes out of scope of enclosing block.
Ex. { MyClass a;
}
/f a's destructor would be called.
(d) private variable - member variable of a class only -accessible by friend functions of class or by member of class.
(¢) public variable - member variable of a class accessible from any function.

(2) Prove that NlogNe O(N?)
Let C, =1, N, = 0. Need to show NloglN < C,N’forall N >N,
Well NlogN S N* <> logN <N
& 2 < N
SN2
We prove N < 2% by induction,
Basis step: N=1 1<2'is true
Inductive step: Assume N < 2V is true to prove (N+1) < 2%
2%1=2+2"=2%+2"> N + 2" by the inductive hypothesis.
2N+ 1since 2<1VNZ0
Therefore since N < 2" for all N > 0, that implies NlogN < N. Thus if ¢, = 1, N,=0
NlogN < ¢,N? for all N > N, Then NlogNe O(N?) by definition.

(3) Show N’ & O(N*%) i
Proof (by contradiction): Assume N°e O(N’"), then there exist N, ¢, such that N* < ¢ ,]N** for all N > N,. N’ < ¢ N** & N2 < ¢,, Take N=max (N,,
(C, + 1)Y) to get a contradiction. ‘

(4) Say how to use #ifndet. #endif in header files.
#ifndef My_h /fprevents the problem that header could be included
#define My_h /ftwice in your implementation or user files.
flyour interface
#endif

(5) Explain what the this pointer is and give and example of use.
The this pointer is a pointer to the current object of which we're running the member function of.
Ex. int main()
{ MyClass a;
afun ();
}
void MyClass::fun(}
{ this »myfun{ }; }
// In this example "this" would be the memory address of a.
{1 this pointer is useful for overloading = .

{6) Consider
C,=0
Cy=Cy, +logN
Show C € O(NlogN)
Well C, = (¢, + log(N-1)) + logN
. = ((Cy; + log(N-2)) + Iog(N-1) + logN

Expand N times to get C, completely expanded as a sum of N things.
Each of which is less than logN.
soget Cy<log N +... + logN
N times
<NlogNforallN>0
So C,e O(NlogN)

END OF LECTURE AND SET #4 sttsksisdbrkhbhibrtbkbhhkbbebehbtbikhbkbbhbkkktrberthkbbbbbbbrriirs

= Fall 2000

Copyright 2000

PROGRAMMING IN COMPUTING 10B
PROFESSOR - POLLETT
SET #5

OCTOBER 30, 2000

HW?3 due Friday 9:30 am

Today: Example of using linked-lists. Automatic type casting in C++. Templates

Application of Linked List

Sorting (Insertion Sort)

Gl - ED%H -0

1st pass

II]—»IDAII}ID
ae

2nd pass
read where we're at

N0-M0-E0-E0
YHO-EIH

3rd pass

YaO-E0-H0-E0
O-E0-E0

4th pass

"ID—>EIIZI—>IEI—>IB
—9m|:|—). D—)lD——).El //Keep inserting item under consideration

{fwhere it fits in sorted list.
Inserted here
For n node list we do insertion operation O(n) times. Each insertion takes O(n) time. So this is an O(n®) algorithm.

Code fragment for insertion sort
node heada(0, NULL),
link a=&heada, t=a;;

for (int i=0; i<N; i++) //generates a list of length
t=(t—snext=new node(rand%1000, NULL)); /1500 containing random numbers
node headb(0, NULL); /ess than 1000
link u, x; '
Jink b=&headb;

for(t=a—next; t!'=NULL; t=u);
[u=t—next;
for (x=b; x~»next!=NULL; x=x—next)

{ if (x—next—item>t—item)
: break;
}

t—next=x—next;
X—rnext=t;

X—next

“SEO, A0
-

Automatic Type Casting
Consider float a=0.2;

a=a+l; /fThis is an int the way computer handles this is 1st typecasts

/lto a float then adds
This is different from
float operator + (float a, int b)

Can do this style also in C++ to allow type casting from say an int to your Class A just add a constructor which just takes an int.
class A
[public:

A(int 1); /used to convert from int to class A.

So if we wanted to we could Just define operator + for objects of type A

Templates
Often the case that we would like to write code that works on a variety of kinds of inputs.
Consider
void swap (int& varl, int& var2)
[int temp;
temp=varl;
varl=var2;
varz=temp,
}
If we changed int& varl and int& var2 to type char& the same code would swap the two char's. Rather than have to re-enter same code for
whatever type we want better to use templates
template<class TYPE> //could be any C++ name
void swap (TYPE& varl, TYPE& var2)
{ TYPEtemp;
temp=varl;
varl=var2;
var2=temp;
)
inf main ()
{ chara="A", b="B";
swap (a, b); /TYPE in this case is clear
cout<<a<<b<<endl, /BA
‘int ¢=1, d=2;
swap (c, d);
cout<<c<<d<<end]; 1121
return O;

}

END OF LECTURE *****************.t**********#**#***#*****#**#*#*#*********##t#***********#*
NOVEMBER 1, 2000

HW3 due Friday. Midterm average = 15

Last day - started talking about templates.
Today - more templates

ha

Selection Sort-with templates

Set up: have an array to be sorted. Have an index to keep track of what's already been sorted. We pick smallest item yet to be sorted and swap it
with element in index and advance index.

index {everything before index is sorted)

1
[3[3 1T 6 | 9]
A

—

2
~

2nd pass

HEAGEEN

3rd pass
[2[4]6]5]° |
I
4th pass

l
I2|4|51619J done

We do O(N) swaps. Searching for smallest for a given swap look at O(N) elements. Sp total number of elements examined to perform all swaps
O(N?).
Above algorithm sorts "in-place” i.c. we do not need to create a temporary array 0 do sort.
Now let's write a generic sorting algorithm that works for any object for which < is defined.
Aside:
Definition: A generic function is one that can work on many types because defined using templates.
Will use swap values function from last lecture.
template <class T>
void sort(T a[], int size) // "size" is the size of array a.
{ int indSmal};
for (int i = 0; i < size-1; i + 1) // by time we get to size-1 array already sorted.
{ indSmall = IndexSmallest(z i, size);
swap_value (afi], alindSmall]);
)
}
template <class T>
int TndexSmallest (const T af 1, int start, int size)
{ T min = a[start]; /ismallest so far
int indMin = start; /iwhere smallest lives
for (int i=start+1; i<size; i++)
{ if (afi] < min}
{ min=ali};
indMin=i;
)
}
refurn indMin;
} ffend of IndexSmallest

int main () -
{ charc[5]={k, "o, 'W,d,Y'}:
sort (¢, s);
cout<<ci0]<<c{l]e<c[2]<<c[3] //prints dhowy
<<c[4]<<end];
retwrn 0;
}

could also use sort for int's.

Templates with classes
Ex template <class T> {fcan have more than one generic type if 50
/lseparate by comma
class StoreObj Histores one object of whatever type we wanf
{ public: g

StoreObj (T obl);
T getObj ();
private:
: T object;
b
/To write member functions
template <class T>
StoreObj::StoreObj (T obl)
{ object=obl;}

template <class T>
T StoreObj::getObj()
{ return object;}
#ITo use this class
Ex1 StoreObj<int> Storelnt(3); /f/<int> says T is int
cout<<Storelnt.getobj()<<endl; /prints 3 to screen
Ex2 StoreObj<char> storeChar('a");
cout<<storeChar.getobj({)<<end]; //prints an a to screen

END OF LECTURE **#***#*****#*#**

NOVEMBER 3, 2000
HW4 will be up later today

Lastday - templates with functions and with classes
Today - Stacks (will use templates)

Stacks (since it's short, here's the interface...)
template <class Item>
class Stack
{ public:
Stack(int s); /finitializes the stack array to be size s.
bool empty() const; /fconst means we won't modify private data.
void push(ltem item);
Htem pop();
private:
Item *array;
int maxSize, curSize;

|5

/fbefore look at code to implement a stack let's see how it's used/what's
1lit good for.
Stack <int> s(10); /Mcreates a stack of into of size 10.

push(5); e—top ot shuk
push(4); - —=
push(3); o =% o =7

cout << pop()
cout<< pop{);
cout<< pop() << endl;

3 returned

>

2nd pop return 4 s 4 returned and printed

3rd pop returns and print

stack empty

so above prints 345

Where are stacks used?

Any language after Algol uses runtime stack for function calls.

int main()

{ inta=4,b=35,c=6 on to stack that way when myfun() finished
myfun(); — we push we can pop these values off the stack
: to find out what the values of the

}) local variables of main were.

void myfun() .

{ inte=6,t=10
myfun2(); — after this call

1

ol al ol v o] ool o =)=
S)

So after myfun2 ends pop e, f off stack to get their values and stack looks like
E & would be set to 6 again, { would be set to 7.

a

One advantage to storing local variables in the stack during functions calls is that is allows functions to call themselves ",
int factorial(int n)
{ if(a==0)remumk;
return n*factorial(n-1);
}

(2) Used by compilers in syntax checking
Consider a language with the following pairs of tag
‘for

endfor
The following code would be legal
for

for

endfor

for

endfor

endfor

for /fbut this would be illegal

for i

endfor

endfor

endfor < would try to pop an item from an empty stack.

We could keep track of whether things nested cormrected by whenever we see a for we push a symbol on the stack. And whenever we scc an endfor
insist we can pop an itme from stack. If can't pop then give an error.

(3) HW3
To read number push item onto stack
if had 1 2 3 would push on stack

- Nlul

25

if second number was 456 on another stack would have L6 |

Now to odd, pop digit from top of each stack add them and any carry push result onto a third stack.
Now to point out sum keep popping till third stack empty each time printing a digit.

(4) reverse polish expression evaluation

54 + is same as 5+4

reverse polish notation

354 +-is3-(5+y)

35-4+is (3-5)+y

To evaluate such an expression with stacks

(1) Whenever see number push it on the stack

(2) Whenever see an n-ary operator pop n items from stack and evaluate accord to that operator push resuit onto stack.
After finished expression result is top of stack.

Ex.35-4+

E after |5
P 5 “3
after
3
see - pop 2 items from stack push -2 onto stack
] -2
now push y
l’i‘ Then see + & answer
-2

END OF LECTURE AND SET #5 LR SR L L LR R R L R LR B T e P PR R P E T T ey

LectureNotez

PROGRAM IN COMPUTING 10B
PROFESSOR POLLETT

NOVEMBER 6, 2000

HW 4 is np. GetInput now retums as int.
HW3 solutions up, module commenting.

Last Day - was talking about stacks

Today - implementation of stacks. Make some remarks. Then talk about Queues and recursion.

Code for stacks
template <class Item>
Stack :: Stack(int s)
{ CurSize=0;
maxsize = §;
array = new Item(s];
if(array = = NULL)
{ cout << "Qut of memory\n";
exit{1);
}
} #end Stack

template<class Item>
Stack<Item>::~Stack

{ delete [] array;}

template<class Item>

bool Stack<Item:>:: empty()const
{ retuwrn curSize == 0;}

template <class Item>

void Stack<Item>:: push(Item i)

{ .amay{cursize ++] =1} /fon HW make sure array not full.

template <class Item>
Ttem Stack<Item> :: pop()
{ return array[--cursizel;}

ursize

‘1!2 [3] |«

WC -~ return 3
NEE

Random Remarks”
(1) Code for implementation in book is in class definition
template<class Item>
Class Stack
{ {staff
Item pop() { return array[- -curSize];}

1 stuff
}

This is legal and sometimes useful if the impiementation is really short. But if takes more
(2) Rather than implement using arrays could have implemented Stack using list. For example,

that Item and insert at head of list. .
(3) In above, pop, push, empty all take O(1) time to run,

(4) Sometimes hear term FILO used for stacks (First in Last out)
(5) Related to (2) we cen in fact implement lists as 2-D arrays.

QQ.

Fall 2000

Copyright 2000

than a couple lines to implement do as in class.
to push an Item on stack create a2 new Node with

Ex.

X6 /w!mm-
g 1t j
F4

e EM = B~ - [~ kM

511

-t

Queues - Like a stack except FIFO (first in first out)
Interface for Queues
class Queunes
{ private:
/limplementation Specific
public:
Queue (int s);
~ Quene(};
bool empty(); // is queue empty?
void put(Item); ’
f/put i at end of Queue.
Item get();
/freturn first tem in Queue.

|5

Ex. Printer Queues.

Suppose you want to print a bunch of files. In Unix, type

lpr a.ps <ret>

1pr b.ps <ret>

Ipr c.ps<ret>

Can type this faster than it takes to print out a.ps. Also there may have been people before you printing sivif. What happens is your documents
are placed on a print queue.

« head of queue a.ps < head
b.ps
—after earlier c.ps ¢« tail

stuff prints 1

— tail of quene

After aps goes to printer
b.ps <« head

| ——

c.ps « tail

e,

Then b.ps goes to print.

c.ps +— headHail

L
Then Queue is empty. Basically printer call remove function of Queue.

Ex. 2: Operating systems sometimes use multilevel priority queues to schedule tasks. Each task has a priority. There is queue for each priority
level giving which task to execute next. .

Level [Job] - yob 2 —JIob 3« queue
0

Jevel 10 PJob 204 — [iob 2 —>}Iob22 - tail

Jobs of level 0 execute first, then level 1, etc. :
Among jobs of a given level acts like a queue, i.e., First in First out.

[
'

END (0] LECTURE **#t##ﬂl'***t****llﬂ#**lll##*tlll*##**t*****!k#*******#*##**#**#t#*#*#*###*#***#*** .

NOVEMBER 8, 2000
HW 4 due Tuesday

Couple of typos from last day.

When we have templates in driver file need to include .cpp file of implementation. So should probably put the .cpp file between
#ifndef/H#endif.

When we implement member functions we should do

template <class Item> :

Stack<Item>::Stack (int s)

[flcode

J

Today we will talk about recursion
Definition: A recursive algorithm is an algorithm which calls itself.
Ex int factorial (int N)
{ if (N=0) retumn 1; < Basc cases or stopping case

return N¥factorial(N-1); f%*®
}
Ex factorial (3)

returns 3*factorial (2)

returns 2*factorial (1)
returns 1*factorial (0)
retums 1

So get 3*2*1*1 = 6 returned

Saw before that function calls are implemented with stacks. So functions that call themselves okay. What is the advantage of having recursive
functions?

1. Very useful in coming up with correctness proofs of your algorithms.

2. Generally, easier to get a recurrence relation that bounds runtime of your algorithm.

3. Much easier to write compilers using recursive descent methods than iterative ones.

What are the disadvantages? -
Since use runtime stack takes more space t0 run a recursive program.
Also calls to runtime stack generally slower than incrementing a counter in an iterative program.

Ex proof of correctness of factorial

Claim for all n factorial (N) returns N!

Proof by induction

Base Case: When N==0 factorial (N) returns 1 and 0! = 1, so works.

Inductive Step: Assume factorial (N) = N! to prove factorial N+1)=(N+1)!
Consider factorial (N+1), line ** will be executed.

So (N+1)*factorial(N) returned. Factorial(N) = N By the inductive hypothesis.
So factorial (N+1)=(N+1)*factorial(N) = (N+1)*N! = (N+1)!

Number of sub calls to factorial on factorial(N), Subcalls(N) = 1+Subcalls(N-1) Subcalls(0)=0. Subcalls(N) is a recurrence relation and
Subcalls{N)=N.

Ex Let's try to write a recursive function which computes x" for n=0
double pow{(double X, int n)
{ if (n==0) return 1;
return x*pow(x, n-1);
}

As in factorial case pow(x, n) makes O(n) subcalls (o compute n.

. {(x ®2 32 if n is even
= (x** y*x if n is odd

Using this can get an algorithm which takes O(log N) many subcalls.
Double pow2(double x, int n)
{ double temp;

if (n==0} return 1;

temp=pow2(x, n/2); //n/2 rounds down
if(x%2==0) return temp*iemp;
retwrn temp*temp*x;
}
Why did I use temp rather than pow(x, 0/2)*pow(x, n/2)¥x?
To avoid recomputing pow2 twice which would produce no savings over previous algorithm.,

Some remarks on recursion:

If don't have a good base case can get infinite loops.
void bob{}

{ bobQ; } /fwill go till runtime stack overflows.

END OF LECTURE AND SET #6 ***#*****************#

' — Fall 2000

Copyright 2000

PROGRAM IN COMPUTING 10B
PROFESSOR POLLETT
SET #7

NOVEMBER 13, 2000
Hw3 will be retarned by 3. Hw 5 up tomorrow.

Last day-recursive functions
Today-more recursive functions, recursive member functions, function pointers, memoization.

Recursive member functions (a member function which calls itself)
ex. class MyNum
{ public:
//some methods
double pow(int n);

private:
double x;
}
doubie MyNum::pow(int n)
{ int temp;
if (n=0) retura 1, Jlexample of recursion in a member
temp=pow(n/2); /Hfunction
if (0%2==0) return temp*temp;
else return temp*temp*x;
}

Some recursive list operation
int length(link x) < computes length of list
{ if(x=NULL)
return 0;
return 1+length(x—mext);
} .
_ TN)
void traverse(link h, void visit(link)) hey, we're passing a function
/this function goes through each node of the list and does a visit operation on each node.
{ if (h=NULL)
return;
visit ¢h); fido whatever visit does on h
traverse(h—snext, visit),
} .
since recursive call last statement in block of code, this function is called tail recursive. A tail recursive function can easily be replaced by a
for loop and some compilers will do this antomatically.

Back to fact we passed a function as a argument...
Tust like any variable each function you write has an address in memory so you can have a pointer to this address and use this pointer o run the
code at that address.

ex. void (*myfnptr)(link h);

*myfoptr is a pointer to function which takes a link as its argoment and returns a void.
void myvisit(link h)

{ cout << h—item << end}; }

myfaptr=&myvisit; //in main or some function we would write this

Ilnow myfoptr points to where compiled my visit code is.

(*myfoptr)(mylist); //where mylist is a link calls the function myvisit on mylist

To call traverse could do:
traverse(mylist,,mtvisit)/;llcan't remember may need &

Can "fake” classes in C using functions pointers as member variable of structures,

Let me now go back to writing one more recursive version of a list operation
ffraverse a list from the end to the start ’
void traverse R(link h, void visit (link)}
{ if (h=NULL) retumn;
‘traverse R(h—next, visit);
visit(h);
1

{fthis code uses the runtime stack to store list in reverse order first then visits each node in this reversed list.

i I/_\l [-—-—-?“:.l/,:; l — |4 | I swe, neuct s Null stop
/)i _)t Jvisit

do Ut tme

+hn Gl ends.

h

Divide and conquer

Idea: recursively split problem into two subproblems of roughly same size, do each subproblem, then combine the result.
Divide and conquer to find max item it an array.

template <class Item>

Itern max(ltem a[], int L, int 1)

{/Iprecondition: < defined for Items

{ if (l==r) return a[l];

int m=C+1)/2; /fmidpoint of area in which searching for a maximum
Item u=max(a, 1, m);

Item v=max(a, m+1, r);

if (u>v) return u;

else return v;

}

END OF LECTURE kkkkkkkkkkkkhkkkokkkkh ok ke kk kR kb kR F R FFkkkF ok k kR Rk F Rk Rk Rk R Rk R Rk Rk TR kR FRE

NOVEMBER 15, 2000
HWS is up. Will have HW4 solutions up later today.

Last day - talked about Divide and conquer algorithms
Today - memoization, graphs/trees

Dynamic Programming/Memoization = approach to solving recursive problems where we store subproblems have already taken care of.

Consider the following very inefficient algorithm to compute Fibonacci numbers:
F)=0
F(1)=1
F(n) = F(n-1} + F(n-2)

int E(int 1)
{ if(i<1) return O;
if(i = = 1) return 1;
return F(i-1) + f(i-z);
}
This algorithm will take exponential amount of time to compile F(i).
To see this consider computation of F(10) -

FO) + E(8)
\ 7N\
F® + F7 FO + F@)

- .
- M ’ .

Notice we compute F(8) twice

~ -

F(7) three times

F(6) 5 times
We recompute F(1), F(0}, . . ., F(10) many times since fibonacci sequence is exponential in i. We have to do exponentially many
recomputations of leaves. However, not too hard to compute Fibonacci sequence in linear time iteratively.

— int maxN = 1000, FimaxN];
F[0] = 0; F(1];
for (i = z; i < maxN; i++)
Hi] = Fii-1] + F[i-2]; ‘
{fstarts at F[0], F{1] and computes up to F[maxN-1].
/fThis is called bottom-up approach. Recursive approach work, from
HF() 1o F(1), F(0). This is called top-down approach.
Can we make the top-down approach as efficient as bottom-up approach? Yes.
Solution is (0 memoize i.e., store subcomputations.
int F(int i)
{ static int knownF[maxN]; /will store values we've already computed.
//Static local variables return their values
/fbetween function calls.
- if(knownF{i} ! = 0) return known F[i];
int t;
if(i <) return 0,
if(i = = 1) return known F[ij = 1;
4f(> 1) t = Fli-1] + Fi-2);
return known F[i} = t; //store t then returns its value

}

known F(3) = §, 5 retumned
Consider F(5)
€5

- /
Wﬂﬂ‘.] 3 F(‘) "F(;) f(,’h"“" 2

so this algorithm is linear in n.
€3

o
o F =1 .i{) \ R ams |
2

{

paosa bz} 1 N\ gu)
Y

7\ !
1]
/E‘M IR}/) |F(l) F(D) N
Graphs/Trees
Trees - useful in describing dynamic properties of algorithms. For instance, Fibonacci program above. Also useful as date structures to
organize information.
Ex. (1) File directories: can think of desktop as root of tree.
Folders are internal nodes. Files are leaves.

o~ - Desktop '
mycomputer windows
VA RRN
File 1 File N

(2)Search trees: a way to organize date say in a dictionary, database, for quick retrieval.
(3) Sorting algorithms

Uses of graphs
Useful to represent any kind of network (internet, neural riet, cellular automata). In graphics all objects are approximated with polygons which
are graphs.
Formal Definitions
Definition: A (directed) graph is an ordered pair G = <V.E>
V-a set of vertices
— ECVxV-asetofedges
T
ordered pairs in V.
1 . G = <{1,23.4,5}, {{1,2),(1,3).(3,2),(4.5)}>

- z
1
G represent picture.

3] 3

If we had written edge as {3,2) rather than (3,2) and similar for each edges, we'd get undirected graph.
END OF LECTURE ll=*******#***#*******t*****t**#*#******##**#***#*#*#t**************##**#*##*

NOVEMBER 17, 2000

HW5 due Wednesday not Monday after Thanksgiving

Last day - we defined graph

Today - talk about trees. Draw some pictures, define things.
Recall a graph was a pair G = <V,BE>

<

Need a couple definitions to talk about trees
Definition: a sequence of vertices connected by edges leading from one vertex to another vertex with no vertex appearing twice is called a
simple path. A simple path with same start and end vertices is called a cycle.

Ex . < \ (1, 2, 3, 4) is a simple path
h (1, 4, 3) not a simple path since no edge between 1 and 4
1 —_— 3
1 3 " (1, 2,3, 13 is a cycle.

Definiton: A graph is connected if any two vertices are connected by a simple path.

Ex. To avoid having to make doodles
6) to say a vertex is connected to itself we consider singleton sequences as legitimate simple paths
i

)

* e ched . U5 connected
. 5wt coanecked Ky
s

is connected

Ex. | — 32 "3 can't go 2 fo 1, not connected

Ex. nocantgo2to 1

lemn A

Definition: A rooted tree is a graph with a vertex called the root such that there is exactly one simple path from the root to any vertex and any
edge the graph belongs to one such path. taat
oot l/\'l not a tree since there are 2 paths to 3.
!

N G i3 & dree
AV

If take a rooted tree and "forget" directions then you have a tree (sometimes called a free tree)

A tree is always connected

c(mquk-r

Ex.
m
w 3
_ Wiadess File 3

Filet Fler

Suppose we have
npt a tree but this graph contains two trees.

/& A _ so a graph made up of trees called forest

X,z are siblings

7\ both children of root

/!' ./x x is parent of y
S—DVJ y is child of x
L4 7 x is an ancestor of w.
_ Let's talk about implementing trees)
template <class T>
struct node { Item i; } node *, *m, *1;}
!/ these addresses

/f would be stored in consecutive locations in memory
1 o have fixed some order on subirees of a give node.

—
i

{(Aside: A subgraph of graph G = <VE>isG=<V,E>suchthat VVC V. E C E. A subtyee is a subgraph of a tree whichis a tree).
An grdered tree is a rooted tree in which children of every vertex are given in some order. (So corresponds to how we implement trees with

structures)
Also how we draw frees

AN

left —right

So can order node by how for right they are.

Can tweak above structure if want two children or more than 3.
template <class Item>

Struct node {Item i; node *1, *r;}

If we wanted more than three
template <class Item> .
struct node [Item i; node *children [1;) however many we want
Definition: M-ary tree is an ordered tree such that every vertex has 0 or M many children. In case M = 2, called binary tree. Now 0 children case

is implemented by a pointer to a NULL node. These are called external nodes. Nodes which aren't external are internal. At leaf for an ordered tree .
is an intetnal node whose children are all external (A leaf in a rooted tree is a node without children)

il I [&—— internal node, not a leaf

Ex 4
@-é N BTl e— o leat
AT T

exdeinal node Nut \@

This is a binary tree

Definition: The level o,f a node in a rooted tree is the number of edges in a simple path from root to node.
tewlo h

‘ /\}‘ fevel

- N gevel & o
Height of tree is maximu/m\gf fvels o%nodes in the tree
Ex. This tree has height 2.

END OF LECTURE AND SET #7 Pa—————————————————r L P T T Y T PTRR SAT EE 2 IS LI LI L IS A s b bt i

e
e

—
N e
\:\
—
—~——_

— F

Copyright 2000

PROGRAMMING IN COMPUTING 10B
PROFESSOR POLLETT
SET #8

NOVEMBER 20, 2000

Last day-was talking about trees
Today-more trees, tree traversals.

Given a rooted tree

M the level of a node is the length of simple path from the root to the node.

A

Za -3

AN

level of node 3 is 1

100t is level O

level of node 5 is 2

Height of tree is the maximum level in the tree. For above tree is 2.
Height useful to bound search times for items in trees.

Definition: the Path Length of a tree is the sum of the levels of all the tree's nodes.
ex. for above tree 0+1+1+2+2+242=10

Internal path length-sum levels of internal nodes
External path length-sum levels of external nodes

oo P

EPL=1+1=2
] W

Theorem A binary tree tree with N internal nodes has N+1 external nodes.

Proof (by induction)

If tree is just a root which is a nuil pointer. Have 0 internal nodes; 1 external node so works.

Assume true for binary trees with <N nodes. Consider a tree which N internal nodes. Left subtree has N-K-1 internal nodes. Right substree has
K<N internal nodes.

L/.\K

By the induction hypothesis the left subtree has N-K-1+1=N-K external nodes right subtree has K+1 external nodes. Adding we get N-
K+K+1=N+1. QED.

Theorem The height of a binary tree with N internal nodes is at least logN and at most N-1.
Intuition

N

\ Height=3 has 4 internal

/ \ number of internal nodes ~1/2 nodes in tree log of # nodes in iree gives height.

/\ /\
AN

Proof (by induction) for the tree with 1 internal node is true
Height is 0=logl=1-1

/™

O

Suppose true of trees with <N nodes. Take any tree with N internal nodes. It must have at Jeast one leaf (prove this by induction). Replace this
lea.f with an external node gives a tree with N-1 internal nodes.

'

By mductlon hypothesis, this latter tree has height <N-2. So former is at most one taller so has height <N-1.
For log case, consider root of tree.

mleﬂl T_Kxg '“m::

N-K-1
mtemal internal
nodes nodes
So can apply induction hypothesis to two subtrees.
Height of the whole tree is max {logK+log(N-K-1)}+1

If try to make this as small as possible K = N/2. So height is at least log (N) +1=logN+log —-+ 1=1logN.
Tree traversals
ex. 2+(3*5)
*
/ \A
/\
3

s

could be useful to go through the nodes of tree in some order to calculate the value of this expression.

L

/ \. Preorder traversal visit current node then visit left then visit right ABCDE
E

/\

Inorder-visit lcft, v1sxt root of current tree, visit might subfree
CBDAE

Postorder traversal-visit left, visit right, visit root.

CDBEA

END OF LECTURE *#*****##*#******t*lli#**#*#*;IG*#******#****#*****##*##*#*&#*###**##**#*#**##*

NOVEMBER 22, 2000

Last Day - we proved some facts about trees we talked about preorder, inorder, postorder tree fraversals.
Today - look at code for above and other algorithms about trees.

Code for preorder traversal (using recursion) /fvisit Root - Left - Right
void preorder (link h, void visit{link)) '
2

27

{ if(h ==NULL) return;
visit (h);
preorder (h—l, visit);
preorderth—r, visit);
)
How to "hardwire” a tree to test out this function.
Let's say want to create the tree,

/‘l" M

Using our struct node for binary trees where link is a typedef for node*
node root, left, right, lleft;
link h = &root;

root.item = 3;

root.l = &left;

rootr = &right

left.item = 2;

left.]l = &lleft;

leftr = NULL:

right.item = 4;

right.1 = rightr = NULL;
lleftitem = 1;

lleft.r = lleft.] = NULL;
preorder(h, vis);

/f where vis is

void vis(link h)

[cout << h — item << endl;}

Output _ -
3

2
1
4
Level-order traversal //useful for breath first search

A

/

traverse each level in turn left to right 123 45

Unlike other three traversals which were coded using recursion (and hence implicitly used stack) we will code this iteratively using a queue.
Let's assume we've already coded a template class for Queue.
To do level order traversal...
void levelorder(link h, void visit(link})
{ Queue<link> q(max); //max is some static constant,
/fquene that stores links
q.put(h);
while(!q.empty())
[visitth = g.get());
/! get head of queue. Set h equal to this visit h.
if (h—1 ! = NULL) g.put(h—l);
if(h=r ! = NULL) q.put(h—1);
}

}
Suppose h was

Suppose visit is vis given above
First put 3 on queue
Second remove 3 print it
put 2 4 on queue
Third remove 2 print it
put 1 on queve
Fourth remove 4 print it
nothing to put on queue
Fifth remove 1 print it
done
Print 3
2
4
1
Simple algorithm to print out a tree.

void printNode(ltem x, int h)
{ for(int i=0; 1 < h; i++)
cout<<" "
cout << x << endl;

}

void show (link ¢, int h)

{ ifE==NULL)
{ printNode (**', h);

refurn;

}
show(t — r, h+1);
printNode (¢ — item, h);
sshow (t—1, h+1)

)
The function show prints out tree t h spaces over
EJ
4 *
3 *
2 ®
i *
*

END OF LECTURE AND SET #8

g e S P T P S TR ST TS LS S L L Lo Rl L SRl l Ll

—— Fall 2000

Lectu re N Ote S —W

PROGRAMMING IN COMPUTING 10B
PROFESSOR POLLETT

SET #9
NOVEMBER 27, 2000 On a list of N items we advance i, O(N) times.
HW4 returned by tomomow. This Friday practice final on the web. On each advance of i need to do an average O(N) comparisons
© [swaps.

Last Day - talked about tre~ traversals and algorithms based on
trees. "~ So algorithm is O(N%
Today - sorting algorithms. .

Code for Insertion sort

Sorting template <class Item>
Have a collection of objects for which operator < defined (also void exch {@tem &A, Item &B)
have operator =, == defined). “Would like to put objects in order. { Itemt=A; A=B; B=t;} //swaps A and B. Note =
' floverloaded.
Ex FUDGE " template <class Item>
1 void compexch (Item &A, Item &B);
DEFGU { if (B<A)exch(A, B); } /mnote need < defined.
Today will consider algorithms which are O(N) time to sort N template <class Item>
items. void sort (Item a[}, int 1, intr) //sort between 1 and 1.
For large data sets best algorithms are O(NlogN). { for (int i=l+1; i<=r; i++)
However, the algorithms we consider today will be easy to write ~ for (int j=i; j>1; j--)
and for small data sets work well. compexch (afj-13, afj]);
Some considerations about sorting algorithms. }
Internal vs. Externat Sorting
In internal sorting data to be sorted fits entirely in memory. Above is a so-called nonadaptive sorting algorithm i.c.,
External sorting involves leaving some of data on disk or tape operations we did, did not depend on how the original array was
during soriing process. ordered.)
(¥f array was already ordered would do same comparisons.
Disk access will be slow part of your algorithm Swapping of course depends on array).
data from disk read in blocks of some fixed size Adaptive - comparisons made during sorting depend on how the
(512 bytes) - data set ordered.
Want to minimize these block accesses. (HW 6)
tracks broken into sectors = blocks Some more issues to consider when sorting . . .
disk concentric circles called tracks Consider
struct person {char fname[20], lname[20];};
Let's take a look at a first sorting algorithm. Tom Philben
Insertion Sort Bob Parker <—suppose operator < just compares last name
Idea: taking first unsorted item and inserting in correct location in Regis Philben
sorted part
{ Then both
Ex FUDGE 1. Bob Parker 2. Bob Parker
o 1 Tom Philben & Regis Philben
Regis Philben Tom Philben
{,UDG E should be considered sorted. -
compare these two. Since already sorted, don't do anything. :’-l-lifl,arzxsleli.:ezrtil;;:lalit:? t Tom Philben occurred before Regis
1 2. Does not preserve this property.
FUDGE = FDUGE = DFUGE Sorting algorithm which preserves this property is called stable
"y o Insertion sort is stable.
DPRGE = DEGUE = DEGUE Remember -selection sort.
(v il 08] 2

’ *‘*************************
DFGUE = DRGEU = DFEGU = DEFGU = DEFGU done END OF LECTURE 3
Y T S

NOVEMBER 29, 2000

Hw6 up. Bonus up by later-today. Practice final up Friday. For
honors section we will meet on Monday at 2 and discuss bonus.

Last day-talked about insertion sort
Today-making insertion sort faster and talk about bubble sort.

Remember selection sort for final.
Ex Selection Sort

[s13)9]71

Find minimum in unsorted part

Sorfed

ie 3
Vg
3 s [9yv7
swaps minimum value with lefi most to be sorted value
1351917
find min
swap with 5
sorted
]
i315]917
find min
7 swap with 9
sorted |
[31s]7 n
all sorted

\
375 |7]9 done

Let's go back to insertion sort and try to make it faster. Suppose
already sorted to here in array

Soried

Consider 712!3]5] 614l

ie. TZ[3 (3 \14]6l
({)
21314 15]6]

A_A compares does nothing
7137 415 16l
~3 compares does nothing

1) Only need to keep comparing values and swapping iill find a
value less than 4. Actually, we don’t need to keep doing
swaps. We store 4 then move everything after the 3 right by
one.

21315 6 | 4] siore 4

7~

I_Z\ 3| 5 l6k a move 6 right by 1 since greater than 4
T2 3} 5| 5\6\ move 5 right by one

453, so then place 4 in this opened slot

| ERCAERKN

this saves us the time need in swap to store things in a temporary
variable.

For this to work need to know that there was some value left of 4
initially that is less than 4. Otherwise, could end up going off left
of array.)
To handle this we first find the least item in the array and put it in
the zeroth position. This smallest value is sometimes called a
sentinel

i.e. it’s a value that guards so we don’t leave our data structure. In
this case, the array.

Revamped code for insertion sort
template<class Item>
void insertion(Item a[], int 1, int 1)
{ inoti;
for (i=r; i>}; i--)
compexch{afi-1], alil); /set up sentinel
/fsmallest value in a[l]
for (i=142; i<=r; i++) :

{
int j=i; Item v=alil; //v store a[i] till we find where to
ffinsert it
while (v<afj-1])
{ aljl=ali-1};
i
}
afjl=v;
}

}

Save ourselves a couple of assignments each loop over old
program since don’t use temporary variable. Turns out this
program is roughly twice as fast. Unlike our previous version of
insertion sort this version is adaptive, i.e., comparisons made
does depend on original order of array.

Bubble sort

Start with
Start at this side

6Jalols
compare current value at index with value at index-1,
swap if smaller. Keep cycling through array till get
to left hand side.

61 4 \51 9
no change

[« 8
felals)o
swap

4 |6 15189
4 is sorted
sorind | b

AR
don’t do anything

G R

swap

sorted |

do nothing

sorted

(
ARG

END OF LECTURE

IR EEEE R R I RS SR RS R EREE S L EE R E R L E RS B 1)

DECEMBER 1, 2000

Practice Final is up. Final is in Moore 100 on December 10
(Sunday), 3-6

Last Day — Talked about speeding up insertion sort, bubble sort
Today — bubble sort, merge sort

Bubbie Sort
Idea: go in passes, right to left “bubbling” smallest unsorted
value to the left.

Lipass
nothing is sorted start at right
\
{6 14} 9l s
« 5 smaller so swap
|_6_l 4{5)9
& 4 smaller so don't swap
|6 |4] 5] 9| _
sovied) 4 smaller so swap
4 |6) 5] 9|
Now 4 is in correct position
2nd : a 55
sorted | (4 2
k16 15\ 9

Sov A 5 smaller so don’t swap
I|4 I 61 5] 9|
sorted 5 smaller so swap

Now 5 is in correct position

3™ pass
sorted | V%
2 ER 6! 9]
sorted don’t swap since 6<%

4151619
4" pass pass done

How many comparisons made by Bubble sort to sort N items?
We make N passes through array

1* pass make N-1 comparisons

2™ pass make N-2 comparisons

3™ pass make N-3 compatisons

last pass 0 comparisons

Then total number of comparisons Zi=0+ 1 + ... + N-1=N(N-2)/2

So we make O(N’) comparisons
So Bubble sort is O(N®) algorithm

Code for Bubble Sort
template <class Item>
void bubble (Item af], int |, int)
{ for(int i=l; i<=r; i++) // how many passes we’ve made i.e., where
{/ the sorted marker is.
{ for (int j=r; j>i; j—-) / does bubbling to the lefi for a given
fpass
compexch (a[j-1]; a[jl)

}

Let’s look at a faster sort algorithm

Merge Sort

A divide and congquer algorithm
So if want to sort
split into two halves

1302101 (617 p i

sort these two halves and then “merge” the resulis.
So would first sort left half

split into two halves — sort left half

i3] 18l
split into halves
B3]

&« sorted
sort right half of{5 [2]
Ee sorfed
then merge the results
Ll output array

de-a
I

3B outside of region so copies —\ 2 .
Now sort right hand of
E] + sorted
Now merge

1 \
EI? 19-Bl
i
23 @ -z
moit{f the array ﬁ—)@l—ﬂﬂ

s0 copy what’s left of other

Now done sorting left half ofi5{ 219 16 713

so sort right half
1617 3] split in two then sort left and right

|6]]split again
@— soried

so sort right half ofg 17]
« sorted

v

8 ¥-8
a8 e

Now sort right half of E 7]3'
[3] — sorted
Merge results

.

v V
l}llm 351
B HEr

since outside of sorting region, can just copy

Now Merge

o $r -

G0 S

o -ATE]
@E"rﬁrhﬂra—m

m ﬂ_T_‘me

]g]g'_E['_7|—>m « sorted array

Notice when merge two halves which have combined a total of N
elements, it is an O(N) operation.
So now let’s look at recursion iree for sorting N items

¢ merge N item

merge N/2 merge N/2 items
items log N many levels of
merges on each level do
/ N ﬁ/\bl- O(N) many operations.
% % “ oy So total runtime
: : O(N)"logN = O(NlogN)

- -

END OF LECTURE AND SET #9 ##xxdsksakkdrisrs

LecturelNotes

PROGRAMMING IN COMPUTING 10B
PROFESSOR POLLETT
SET #10

DECEMBER 4, 2000
HWS5 solutions up — will go over practice Final on Friday

Last Friday — talked about MERGESORT
Today — will give code of mergesort start talking about Hash tables

Remember how merge Sort worked:

To sort
BT sl 2] 7L1)

N e

Split into two halves

|3 18} 9 11217

sort both halves

Merge two halves to get sorted array

Lilafsir]sle]

Let’s write code for MergeSort
First we’l write code for doing the merging
template < class Item>
void merge (Item a[]; int 1, int m, int r}
{/ merges a[1] .. .a[m] with a[m-1]...a[x]
{inti, j; Ffused for counters
static Ttem aux[maxN}; /temporary array used for merge. Should be static since we don’t
Jiwant to reallocate this memory every time merge called.
J// Now we’1l first copy original arrays into aux array and copy merged results into
// original array
for (i = m+1; i > I; i--) /fcopies right half in reverse order.
//Now we merge results
for(inkk=L k<=1 k++)
/fused to figure out what to put in afk]
{if (aux(j] < aux[i])
{41 starts at 1 by the way we set up for loop above
/i Also | =1 to start
afk] = aux[j--I;
else afk] = aux[i++]

}

Il If didn’t have reverse order

/ / if j array finished first need to have check to make sure didn’t go out of array.

Idea of copying 2% half on in reverse order called bitonic merging

Sorting algorithm
template <class Item>
void mergesort (Item af }, int 1, int 1)

Fall 2000

Copyright 2000

{7

.

{fsort a[l] ...a[r]
{ if(r<=1)retum;
int m = (r+1)/2; /calculate midpoint

mergesort(a, 1, m); /sort left half
merpesort(a, m+1, r); /sort right half
merge(a],m,r); /merge results

}

Hash tables
Ofien want to store data as key and associated information. This is called a dictionary. In *“Real-life” dictionary, the key is a word and the definition
is the associated date.
Other example,
key = Employee ID
associated date = work history

How to store things in a dictionary
(1) Use a flat file (unordered file)

\ K, g \I - | K 4 Bt d Ig-; ~|"|
data data data
pointer pointer pointer

To find an item have to search on average through half of list file.
To insert can just add to head to file so can be done in (1) time.

END OF LECTURE
DECEMBER 6, 2000

Will go over Practice Final on Friday. Final Moore 100 Sunday 3-6

Last Day — finished up mergesort, talked about dictionaries/tables
Today ~ talk about hash tables

Dictionaries/Table
999 25 9999 Ted Smith etc.
677 26 7777 Barb Walters etc.
| :
N i
| !
Considered ways to store Tables
1. Flat file

Just a file/or linked list when data is written out in an unordered fashion. To find data given key expected search time O(N). To find data given key
expected search time O(N). To add new enlry can be done in O(1) time since can just keep as part of our structure a pointer to the last element in file
or last element in list. To insert new item add after last item then update this pointer,

Can we implement tables so look up and insert both take O(1) time?

Yes.

1% way Open -Addressing

Let N=total number of different possible keys, Make an array dataf] of size N whose elements hold associated info.
Ex ifk=997532100canlook atdata[9975 3 2 100] te find info.

Insert can be just using assignment.

datalkey] = info;

This is very wasteful. If want to store only 50 employees but use SSN as key need an array of size 0%,

We’d like to achieve same result without wasting so much space.

Suppose we have N items to store. We’d like to use an array of size M not too much bigger than N and somehow map the keys into the set of size M.
This mapping is called a hash function.

h K § - M]

ep l\
ya
c
e

0,...M

To store data we’ll use an array called hash table. To insert we’l] usually do: tablefh(key)]=info. To look up data for key K we'll usually look at the

entry tablefh(K]]. Since Key’s usually of some fixed length not depending n our table size, we’ll choose h(K) so that it takes constant tirne with
respect to table size. ’

Ex Suppose want to store so employee using SSN as key
‘Could take hash function h(K) = sum of digits in SSN%10,003 then could use this to store employees in an array of size 10,003,
If store 1000 or 2000 employees amount of time to compute h{K) for a given key won’t change.
Problem with above scheme: What if h(K) = h(K’) but K»K’?
This is called a collision.
One way to resolve this problem is to use linear probing.

Ex Suppose h{x)=x%7

0

1 1 — data for 1

If try to store 8 get a collision

1 1 Store 8 and its data in 1* unoccupied space afierward.
To look up an entry with key K. Compute h(K) look if
2 g table [h(K)] has same key. If not step forward through table till find K.

Problem: Consider same h but table

0 Want to store 6, data 6 $o h(13)=h(6)
s0 have a collision if step forward we go off

1 end of array. Instead of stepping forward we
step forward %7.

2

3

4

5

6 i3 — data

" So would store 6 in lecation 0.

6 —data 6

13 — data 13

Provided not “too many” collisions hash tables give O(1) search/insert times.

Ex Suppose we insert 3147 into a hash table using x%4 and linear probing o resolve collisions. Draw resulting hash table.

Insert ’ Insert Insert 4 Insert 4
3 1 4 7 D
1 1 gives 1
coliision D
7
3 3 3 3 «—7
END OF LECTURE

Final has 7 problems. Each 5 pts. — 35 pts. total. No caps/cellphones close book/closed notes. Bring Photo ID

Practice Final
1) Define the following term
a) FILO — First In Last Out — Acronym used for describing inserting and removing objects from the stack.
b) tail recursion — a recursive function where there is one recursive call and it is the last statement in the function.
Ex int fact (int N)

{ ifN=0)retun 1;

return N * factorial (N-1);

1

Point is that can replace this kind of recursion is can replace it easily without for loop.
¢) memoization — also dynamic programming. The process of storing the results of subproblems of recursive pass as we do recursion so we don’t
have to recompute them.

Ex Fibonacci program did in class.
d) external node — in an M-ary ordered tree is a node without children

(implementation with a NULL).
€) adaptive sorting — a sorting algorithm whose operations (the comparisons it makes) depends on the way the original unsorted data was soried.
Ex 2 insertion sort we did.

2) Write a program to reverse a list where Node’s in list given as on Practice Final.
template <class [tem>
ode <Item> * reverse (Node<Item> list) S
/I pointer to reversed lis /f list to be reversed
[Node<Item> *t, *y = list; *r=NULL,;

Ist /7 will store what’s left to be reversed /f reversed list so far
y{1-[2]-

r— NULL

2n

R LRk
r—>m 1

3
"

r
2 = |1
iy |NULL
r 3| 2|1}
done
while (y = NULL)

{ t=y — getNext();
¥y — setNext(r);
r=y;

Y=t

}

refurn r;

}
// end function

3) Briefly explain why the first version of insertion sort we described in class was nonadaptive and why it runs in time O(N®) to sort N elements.
1" Version: template <class Item>
void sort(Item a[], int e, int)
[for(inti=1+1; i<=r;i+)
for(intj=1i;j>1; j--)
compexch (a [j-1] , a[j];

It’s nonadaptive since will do same comparisons regardless of input drray.
It’s O(N?) since outer for loop run N-1 times on array of size N.
Inner for loop does on average N/2 comparison exchanges. S0 run time

O[(N-1)N/2] = O(N?

7\
p2 y
Write out nodes in

a) preorder
ahplp2y

b) inorder

hap2ply
¢) postorder
hp2ypla
d) levelorder
ahplpZy

5) Write a program to compute # of exiernal nodes in a tree
int exNodeCount (link h)
{ if (h == NULL) return 1;

return exNodeCount (h— 1) + exNodeCount(h—r);

)
END OF LECTURE AND SET # 10

