
Semantic Analysis Patterns

Eduardo B. Fernandez and Xiaohong Yuan

Department of Computer Science and Engineering
Florida Atlantic University

Boca Raton, FL 33431
{ed, xhyuan}@cse.fau.edu

Abstract. The development of object-oriented software starts from
requirements expressed commonly as Use Cases. The requirements are then
converted into a conceptual or analysis model. Analysis is a fundamental stage
because the conceptual model can be shown to satisfy the requirements and
becomes the skeleton on which the complete system is built. Most of the use of
software patterns until now has been at the design stage and they are applied to
provide extensibility and flexibility. However, design patterns don’t help avoid
analysis errors or make analysis easier. Analysis patterns can contribute more to
reusability and software quality than the other varieties. Also, their use
contributes to simplifying the development of the analysis model. In particular,
a new type of analysis pattern is proposed, called a Semantic Analysis Pattern
(SAP), which is in essence a miniapplication, realizing a few Use Cases or a
small set of requirements. Using SAPs, a methodology is developed to build the
conceptual model in a systematic way.

1 Introduction

The development of object-oriented software starts from requirements expressed
normally as Use Cases [17]. The requirements are then converted into a conceptual or
analysis model. Analysis is a fundamental stage because the conceptual model can be
shown to satisfy the requirements and becomes the skeleton on which the complete
system is built. No good design or correct implementation is possible without good
analysis, the best C++ or Java programmers cannot make up for conceptual errors.
The correction of analysis errors becomes very expensive when these errors are
caught in the code. It is therefore surprising how poorly understood is this stage and
how current industrial practice and publications show a large number of analysis
errors [6]. We have found that industrial software developers usually have trouble
with analysis. What is worse, even serious journals and conferences publish papers or
tutorials that contain clear analysis errors.

A possible improvement to this situation may come from the use of patterns. A
pattern is a recurring combination of meaningful units that occurs in some context.
Patterns have been used in building construction, enterprise management, and in
several other fields. Their use in software is becoming very important because of their
value for reusability and quality; they distill the knowledge and experience of many
designers.

Most of the use of patterns until now has been at the design stage. However, design
patterns don’t help to avoid analysis errors or to make analysis easier. We believe that
we need analysis patterns to improve the quality of analysis and they can contribute
more to reusability and software quality than the other varieties. We also intend to
show that their use contributes to simplifying the development of the application
analysis model. In particular, we propose a new type of analysis pattern, called a
Semantic Analysis Pattern (SAP), which is in essence a miniapplication, realizing a
few Use Cases or a small set of requirements [8]. Using SAPs we develop a
methodology to build the conceptual model in a systematic way. We use UML
(Unified Modeling Language) [2], as a language to describe our examples.

Section 2 introduces SAPs and how they are obtained. We show analogy and
generalization as ways to develop SAPs. Section 3 describes how SAPs are used in
producing conceptual models from Use Cases. Section 4 compares SAPs to other
varieties of analysis patterns and evaluates their use. A last section presents
conclusions and suggestions for future work.

2 Analysis Patterns and Their Use

2.1 Semantic Analysis Patterns

The value of analysis is played down in practice. The majority of the papers published
about object-oriented design as well as the majority of textbooks concentrate on
implementation. Books on Java, C++, and other languages outnumber by far the
books on object-oriented analysis/design (OOA /OOD). On top of that, most books on
OOA/OOD present very simple examples. To make things worse, professional
programmers need to implement as soon as possible, there is pressure to show
running code and they may skip the analysis stage altogether. What is deceiving is
that software may appear to work properly but may have errors, not be reusable or
extensible, be unnecessarily complex. In fact, most of the software built without
some model exhibits some or all of these defects. Most schools emphasize algorithms,
not the development of software systems. There is a large literature on methods of
system development that although oriented to other disciplines [24], is very applicable
to software, but rarely used (In fact, design patterns originated from ideas about
buildings). Some people believe that with components we don't need to understand
what is inside each component. The result of all this is that analysis is skipped or done
poorly.

We need to look for ways to make analysis more precise and easier for developers.
The use of patterns is a promising avenue.

A Semantic Analysis Pattern is a pattern that describes a small set of coherent Use
Cases that together describe a basic generic application. The Use Cases are selected in
such a way that the application can fit a variety of situations.

Semantic Analysis Patterns differ from design patterns in the following ways:

• Design patterns are closer to implementation, they focus on typical design
aspects, e.g., user interfaces, creation of objects, basic structural properties.

• Design patterns apply to any application; for example, all applications have
user interfaces, they all need to create objects.

• Design patterns intend to increase the flexibility of a model by decoupling
some aspects of a class.

An instance of a SAP is produced in the usual way: Use Cases, class and dynamic
diagrams, etc. We select the Use Cases in such a way that they leave out aspects
which may not be transportable to other applications. We can then generalize the
original pattern by abstracting its components and later we derive new patterns from
the abstract pattern by specializing it (Figure 1). We can also use analogy to directly
apply the original pattern to a different situation.

We illustrate these two approaches in the next sections. We develop first a pattern
from some basic use cases. We then use analogy to apply it to a different situation,
then we generalize it and finally we produce another pattern for another application
specializing the abstract pattern. We then show how to use these patterns in building
conceptual models.

Abstract
PatternApplication A

Application B

analogy

specializationabstraction

p1 p2

Figure 1. Pattern generation

2.2 An Example

In a project we developed a design for a computer repair shop. The specifications for
this application are: A computer repair shop fixes broken computers. The shop is part
of a chain of similar shops. Customers bring computers to the shop for repair and a
reception technician makes an estimate. If the customer agrees, the computer is
assigned for repair to some repair technician, who keeps a Repair Event document.
All the Repair Event documents for a computer are collected in its repair log. A repair

event may be suspended because of a lack of parts or other reasons.
These requirements correspond to two basic Use Cases:
• Get an estimate for a repair
• Repair a computer

A class diagram for this system is shown in Figure 2, while Figure 3 shows a state
diagram for Repair Event. Figure 4 shows a sequence diagram for assigning the repair
of some computer to a technician. The class diagram reflects the facts that a computer
can be estimated at different shops in the chain and that one of these estimates may
become an actual repair. A computer that has been repaired at least once has a repair
log that collects all its repair events. The collection of repair shops is described by the
repair shops chain.

CompShopChain Employee
name name

empNumber

CompRepairShop

Computer

name
location

serial#
manufacturer

1

ReceptionTechnician RepairTechnician

subset

RepairEvent
number
date

number
Estimate

date

RepairLog

*

* InChargeOf*

ResponsibleFor

Customer
name
address *

ResponsibleFor

*

*

WorksAt

startDate
endDate1

1 1

1*

1 1

1 1
1

Figure 2. Class diagram for the computer repair shop.

Suspended

Estimate. sendToRepair /createRepairEvent

AssignRepair
Technician

[assigned] suspend

resume

[completed]

Completed

In Repair

pickup V timeout/ addToLog

Figure 3. State diagram for Repair Event

aManager

Estimate
create aRepairEvent aTechnician aRepairLog aCustomer

assignTech (aTechnician)

assignToRepair

InRepair
suspend

Suspended
resume

InRepair

addToLog

pickup

release

Figure 4. Sequence diagram for assigning repair jobs to technicians

HospitalConsortium Employee
name name

empNumber

Hospital

Patient

name
location

name
SSN

1

DiagnosisDr PrimaryDr

subset

HospitalStay
number
date

number
Diagnosis

date

MedicalHistory

*
*

InChargeOf
*

ResponsibleFor

Guardian
name
address *

ResponsibleFor

*

*

WorksAt

startDate
stopDate

1*

1 1

1

1

1 1

*

1

Figure 5. Class diagram for hospital registration.

2.3 Looking for Analogies

In a later project we needed to design a system to handle patient registration in a
hospital. Noticing that a hospital, instead of broken computers, fixes sick people, we
arrived at the class diagram of Figure 5. We just needed to reinterpret each class in
the repair shop as a corresponding class for a hospital. For example, the computer
becomes a patient, the estimate becomes the diagnosis, the repair event a hospital
stay, etc. Similarly, sequence diagrams and state diagrams are developed in analogy
with those used in computer repair [8].

2.4 Pattern Generalization

We can generalize the patterns of Figures 2 and 5 by noticing that their essential
actions are:

• Application to a collection of places
• Selection of one place to stay
• Keep a Stay record for each stay.
• Keep History of stays
• Personnel is assigned to the evaluation of applications and to do something

during the stays.
With these concepts we can define the abstract pattern of Figure 6, that includes

the two previous patterns. Here the specific institutions have become generic
institutions, patients have become applicants, etc. This pattern fits a wide range of
applications and we can use it in a new application, student admissions in a university
(Figure 7). Here, we particularize institution into university, applicant into student,
etc.

Institution Group Employee

Institution

Spec Employee Spec Employee

Evaluation StayRecord

ApplicantGuardian StayHistory

name 1 name
empNumber

WorksAt

name
location

1 1ResponsibleFor
1 *

name
address

name
number

startDate
stopDate

number
date

number
date subset

*

*

*

*

*

*
*

*

ResponsibleFor

InChargeOf

1

1

1

1

Figure 6 Admissions pattern

One can take portions of these patterns and find simpler patterns. For example, the
set of personnel-related classes in Figures 2 and 5 can define a Personnel pattern, the

collection pattern appears twice, as a collection of shops and as a collection of repair
events. Also, some design patterns, e.g., the composite pattern [13], are useful in
analysis.

3 Analysis Method Using SAPs

To use the methodology it is necessary to have first a good collection of patterns. We
have developed four analysis patterns [8], [9], [10], [11]. We are also collecting the
most interesting analysis patterns that have appeared in the literature [1], [3], [4], [18],
[21], [27].

A possible analysis method using SAPs is described now. We assume we have a
catalog of concrete and abstract patterns as well as catalogs of subpatterns, Fowler-
style patterns1, and design patterns. We examine the Use Cases and/or other
requirements and:
♦ Look for SAPs. We look first for concrete patterns that match exactly or closely

the requirements. Then we try to specialize analogous or abstract patterns that
may apply. This stage is shown in Figure 8, where patterns p3, p5,…,have been
identified and cover some of the requirements.

♦ Look for smaller patterns, such as the subpatterns of Figures 2 and 5.
♦ See if there are appropriate design or architectural patterns. As indicated earlier,

some design or architectural patterns may be useful in analysis.
♦ Add Fowler-style patterns for flexibility and extensibility. This involves

examining classes for possible breakup.
This procedure results in a skeleton, where some parts of the model are fairly

complete while other portions are partially covered or not covered at all. We still need
to cover the rest of the model in an ad hoc way but we already have a starting model.
Naturally, we can still add design patterns in the design stage.

As an example, consider the following requirements: We need a system to handle
the Soccer World Cup. Teams represent countries and are made up of 22 players.
Countries qualify from zones, where each zone is either a country or a group of
countries. Each team plays a given number of games in a specific city. Referees from
different countries are assigned to games. Hotel reservations are made in the city
where the teams play.

Figure 9 shows that this model was almost completely covered with the following
patterns:

1) An instance of the composite pattern [13]
2) An instance of the collection pattern (a subpattern of Figure 2)
3) An instance of the reservation pattern [9]
4) Another instance of the collection pattern
5) Another instance of the reservation pattern
In addition to these patterns one needs several associations to connect them. These

1 Fowler tries to increase flexibility by decoupling some aspects of a class into a separate class,

e.g., the physical characteristics of a person would be separated from class Person [12]. His
patterns in general are small, two or three classes.

associations correspond to specific requirements , e.g., a referee represents a country,
a game is played in a given city. Of course, this is a simple example, larger examples
are not so easily covered. However, the example exposes the flavor of the
methodology.

UniversitySystem Employee

University

AdmissionsOfficer Faculty

Admission SemesterTranscript

StudentGuardian Transcript

name 1 name
empNumber

WorksAt

name
location

1 1ResponsibleFor

1 *
name
address

number startDate
stopDate

number
date

number
date

subset

*

*

*

1

*

*

*

*

ResponsibleFor

Advises

1

1 1

1 1

Figure 7. Student admissions

R e q u i r e m e n t s

S e m a n t i c P a t t e r n s O t h e r p a t t e r n s

C l a s s M o d e l

p 5 p 3

p 2 0 p 1 7

p 6

Figure 8. Use of semantic APs

Qualifying Unit

Country Zone

Team

Player

Hotel

 City

Game

Reservation

Assignment

3

Represents

*

2 *

PlaysAt

22

Represents

1

PlaysIn

* *
*

0…1

*

5

Referee

1
4

3

2

1

*

Figure 9. Analysis model for World Cup example

4 Discussion

The first work on object-oriented analysis patterns is due to P. Coad [5]. More
influential has been the work of M. Fowler, who produced the first book on this topic
[12]. His patterns (and Coad’s) emphasize similar objectives as design patterns, i.e.,
to decouple parts of a class to increase the model flexibility and extensibility. These
authors consider some dynamic aspects in the form of sequence diagrams but do not
use statecharts. R. Johnson and his group at the University of Illinois have developed
several analysis patterns [19], including banking and security; in general, they follow
Fowler’s style. Nature’s project in the UK intends to classify application requirements
into problem domains [22]. Their emphasis is not on modeling although they describe
requirements using class models. Note that our approach results in much fewer
patterns since we can abstract patterns. Another related work is the book of D.Hay
[15], where he describes data patterns; however, he doesn’t consider dynamic aspects.

All these projects have different objectives; in particular they do not emphasize
synthesis of complex models. They are certainly a source of possible patterns and
they are being mined to build the SAP catalog. The design patterns group shows in its
book [13] and in a paper [14], another approach to synthesis: start from a class or two

and keep adding patterns until the requirements are satisfied2. This approach doesn’t
appear very feasible when designing systems with long and complex specifications.
However, it could be useful in the latter stages of our approach. Synthesis of complex
systems is also the objective of a project at Georgia State University [23], and some
of their ideas could be useful in this work.

Methods for synthesis of models using SAPs could result in considerable
improvement to the quality of the software produced in industry. Design patterns have
had a strong effect in design, we need now to do the same for analysis. Other than
improving the analysis modeling there are more benefits:

♦ Test cases are developed from Use Cases but a good conceptual model helps
define the needed preconditions and postconditions. Traceability can also be
improved.

♦ Testing of object-oriented systems involves inspection of the models
developed at each stage. In particular, domain models require careful
validation [20]. The use of SAPs can help make these inspections faster and
more accurate.

The actors of the use cases in the minimal application must be given the required
rights to perform their functions. We can consider actors as roles and if we assign
rights accordingly we have a Role-Based Access Control model of security [7]. We
can define in this way “authorized SAPs’, that include the needed authorizations.

The Object Constraint Language can be used to define precise constraints in the
models [26]. Using OCL the minimal application is defined more precisely using
business rules. Authorizations can also be expressed more precisely.

5 Conclusions

A good analysis model for a portion of a complex system can be abstracted and
become an analysis pattern that can be used in other applications1. Analogy and
abstraction play an important role in reusing an analysis pattern. Subsets of a pattern
may also have their own application in other situations. All this can save time and
improve the quality of a system. One of the most difficult steps in practice is to get an
initial model; this approach makes it easier. In subsequent steps the initial model can
be modified to suit better the needs of the application. An analysis model using
patterns is easier to understand and to extend. It should also result in a higher quality
design. A software architecture constructed this way is more reusable and extensible
than an architecture defined directly from the requirements or where patterns are
applied later. Note that SAP-based development is different from domain analysis,
SAPs cut through several domains.

There are several aspects that we are developing or intend to develop:
♦ The design methodology has been applied to relatively small examples and it

appears useful, but we need larger examples. We are collecting large-system
specifications that we intend to model.

2 A similar approach is used by Johnson’s group [28].
1 We can think also that a SAP is a pattern recurrent in several frameworks.

♦ Related SAPs can be combined into frameworks. For example, Order Entry,
Inventory, and Reservations could make up a manufacturing framework. We
have used this approach with security patterns [16], but we have not applied it
to SAPs.

♦ Pattern languages. The SAPs by their nature leave out many aspects. A
collection of related patterns, a pattern language, is needed to cover a domain
or a significant part of it. We are developing a pattern language for reservation
and use of entities, to complement the basic reservation SAP [9].

♦ SAPs as composite design patterns. A composite design pattern [25] is a
pattern composed of other patterns where the composite is more than the sum
of its parts. SAPs can be studied as special cases of composite design patterns.

References

1. Arsanjani, A.: Service provider: A domain pattern and its business framework
implementation, Procs. of PloP'99. http://st-www.cs.uiuc.edu/~plop/plop99

2. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide,
Addison-Wesley 1998.

3. Braga, R.T.V., Germano, F.S.R., Masiero, P.C.: A confederation of patterns for resource
management, Procs. of PLoP'98, http://jerry.cs.uiuc.edu/~plop/plop98

4. Braga, R.T.V., Germano, F.S.R., Masiero, P.C.: A pattern language for business resource
management, Procs. of PloP'99, http://st-www.cs.uiuc.edu/~plop/plop99

5. Coad, P.: Object models – Strategies, patterns, and applications (2nd. Edition), Prentice-
Hall 1997

6. Fernandez, E. B.: Good analysis as the basis for good design and implementation, Report
TR-CSE-97-45, Dept. of Computer Science and Eng., Florida Atlantic University,
September 1997. Presented at OOPSLA’97

7. Fernandez, E.B., Hawkins, J.: Determining role rights from use cases, Procs. 2nd ACM
Workshop on Role-Based Access Control, 1997, 121-125

8. Fernandez, E.B.:Building systems using analysis patterns, Procs. 3rd Int. Soft. Architecture
Workshop (ISAW3), Orlando, FL , November 1998 , 37-40

9. Fernandez, E.B, Yuan, X.: An analysis pattern for reservation and use of entities, Procs.of
PLoP99 , http://st-www.cs.uiuc.edu/~plop/plop99

10. Fernandez, E. B.: Stock manager: An analysis pattern for inventories, Procs. of PLoP
2000.

11. Fernandez, E. B., Yuan, X., Brey, S.: Analysis Patterns for the Order and Shipment of a
Product, Procs. of PLoP 2000.

12. Fowler, M.: Analysis patterns -- Reusable object models , Addison- Wesley, 1997
13. Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: Design patterns –Elements of reusable

object-oriented software, Addison-Wesley 1995
14. Gamma, E., Beck, K.: JUnit: A cook’s tour, Java Report, May 1999, 27-38
15. Hay, D.: Data model patterns-- Conventions of thought, Dorset House Publ., 1996
16. Hays, V., Loutrel, M., Fernandez, E.B.: The Object Filter and Access Control Framework,

to appear in Procs. of PLoP 2000
17. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process,

Addison-Wesley 1999
18. Johnson, R., Woolf, B.: Type Object, Chapter 4 in Pattern Languages of Program Design

3, Addison-Wesley, 1998

19. Johnson, R.: http://st-www.cs.uiuc.edu/users/Johnson
20. McGregor, J. D.: Validating domain models, JOOP, July-August 1999, 12-17
21. Mellor, S.J.: Graphical analysis patterns, Procs. Software Development West98, February

1998. http://www.projtech.com
22. Nature Project. http://www.city.ac.uk/~az533/main.html
23. Purao, S. and Storey, V.: A methodology for building a repository of object-oriented design

fragments. Procs. of 18th International Conference on Conceptual Modeling (ER’99), 203-
217.

24. Rechtin, E.: The synthesis of complex systems, IEEE Spectrum, July 1997, 51-55
25. Riehle, D.: Composite design patterns, Procs. of OOPSLA’97, 218-228.
26. Wanner, J., Kloppe, A.: The OCL: Precise modeling with UML, Addison-Wesley 1998
27. Yoder, J. and Johnson, R.: Inventory and Accounting patterns,

http://www.joeyyoder.com/marsura/banking
28. Yoder, J., Balaguer, F.: Using metadata and active object-models to implement Fowler’s

analysis Patterns, Tutorial Notes, OOPSLA’99

