
 1

San José State University
Department of Applied Data Science

DATA 200
Computational Programming for Analytics

Spring 2024
Instructor: Ron Mak
Assignment #9

Assigned: Thursday, March 28
Due: Thursday, April 11 at 5:30 PM

Points: Maximum 250

Roman numeral class
You will practice creating a Python class that has
public and private attributes and methods,
properties, and overloaded special methods and
operators.

For a refresher on Roman numerals, see
https://en.wikipedia.org/wiki/Roman_numerals
Read up to but not including the section “Other
forms”.

Class RomanNumeral
Design and implement a Python class RomanNumeral in module roman (source file
roman.py) that performs arithmetic operations on Roman numerals. This class must
have:

• Private attributes _roman (a string) and _value (an integer) that store the
Roman numeral string (such as 'MCMLXVIII') and the corresponding decimal
value (such as 1968) of each RomanNumeral object.

• Private methods _to_roman() and _to_value() that convert between the
string and integer values of a RomanNumeral object and thereby set the values
of member variables _roman and _value. These two attributes should always
be synchronized to represent the same value.

You may choose a partner to work together on this assignment. Turn in only one
assignment and clearly state who the partners are. Both of you will receive the same score.

https://en.wikipedia.org/wiki/Roman_numerals

 2

• Constructor method __init__() one that takes a single parameter that can be
either a Roman numeral string such as 'MMXXIII' or an integer such as 2023.
If the parameter value is a string, store it in _roman, convert it to its integer
value, and store the value in _value. If the parameter value is an integer, store
it in _value, convert it to its Roman numeral string, and store the string in
_roman.

• Public read-only properties that return a RomanNumeral object’s string and
integer values.

• Overloaded arithmetic operators + - * and // that enable direct arithmetic
operations with Roman numerals. Each operator must return a RomanNumeral
object and the operation must not change the value of either operand. Roman
numerals do floor division.

• Overloaded special method __str__() that returns a string for a
RomanNumeral object for printing in the form [string:value] . For example:

• Overloaded special method __repr__() that returns a string that represents a
RomanNumeral object in the form
RomanNumeral(roman='string', value=value). For example:

You may assume for this assignment that the values of the Roman numerals range from
1 through 3999. (Did the ancient Romans have a zero or negative numbers?)

Tip: Do the operations using integer arithmetic on the operands’ values and then convert
the results to Roman numeral strings.

Test the class
Jupyter notebook RomanNumeralTests.ipynb contains four problems to test your
RomanNumeral class.

http://www.cs.sjsu.edu/~mak/DATA200/assignments/9/RomanNumeralTests.ipynb

The tests include reading the input text file expressions.txt and performing the
operations:

http://www.cs.sjsu.edu/~mak/DATA200/assignments/9/expressions.txt

Tip: Use regular expressions to extract and capture the two Roman numerals and the
operator.

MCMLXIII + LVI
MMI - XXXIII
LIII * XXXIII
MMI // XXXIII

[MCMLXVIII:1968]

RomanNumeral(roman='MCMLXVIII', value=1968)

http://www.cs.sjsu.edu/~mak/DATA200/assignments/9/RomanNumeralTests.ipynb
http://www.cs.sjsu.edu/~mak/DATA200/assignments/9/expressions.txt

 3

The file contains simple two-operand arithmetic expressions with Roman numerals. The
operator is either + - * or //. The function should read each expression, perform the
operation, and print the expression and its result similar to:

You may assume that all the Roman numerals in the input are in
upper case, and that there are no input errors. Therefore, for this
assignment, you do not need to do input error checking.

What to submit
The completed test Jupyter notebook.

Rubric

Criteria Max points
Class components
• Constructor __init__()
• Private method _to_roman
• Private method _to_value
• Read-only property for Roman string
• Read-only property for integer value
• Overloaded + operator
• Overloaded - operator
• Overloaded * operator
• Overloaded // operator
• Overloaded __repl__() special method
• Overloaded __str__() special method

110
• 10
• 10
• 10
• 10
• 10
• 10
• 10
• 10
• 10
• 10
• 10

Good program design
• Use of function docstrings.
• Good names and internal comments.
• Well-designed class.

40
• 10
• 10
• 20

Problems
• Problem 1
• Problem 2
• Problem 3
• Problem 4

100
• 20
• 20
• 20
• 40

[MCMLXIII:1963] + [LVI:56] = [MMXIX:2019]
[MMI:2001] - [XXXIII:33] = [MCMLXVIII:1968]
[LIII:53] * [XXXIII:33] = [MDCCXLIX:1749]
[MMI:2001] // [XXXIII:33] = [LX:60]

 4

