
 1

CS 46B
Introduction to Data Structures

Summer Semester 2015

Department of Computer Science
San José State University

Instructor: Ron Mak

Homework #10
Huffman Coding

Assigned: Thursday, July 30

Final due: Wednesday, August 5 at 11:59 PM
Codecheck URL: http://codecheck.it/codecheck/files/1508010323ehsg28urjg6q8sjsian3rrpmi

Canvas: Homework 10 Final
Points: 20 points max

This assignment will help you understand the Huffman binary tree and Huffman coding.

You will generate a Huffman tree using the characters from the input text file
GettysburgAddress.txt and their frequencies. If the text file was originally encoded using
the 8-bit UTF code, how much space savings will there be if the file is encoded using the
Huffman code?

You will use HuffmanTree.java that you can download from your textbook’s website:
http://bcs.wiley.com/he-bcs/Books?action=index&itemId=1118431111&bcsId=7872

Write a new class HuffmanGettysburg that has at least the following methods:

• Method makeFrequencyMap() reads the input file and returns a frequency map
that maps each character in the file to its frequency.

• Method computeCharacterCount() iterates over the frequency map and returns

the total number of characters in the input file.

• Method printHuffmanCodes() uses both the frequency map and the encoding

map (obtained from the Huffman tree) to print a table of the characters in the input
file, one character per row in sorted order. For each character, print the character,
its frequency, and its Huffman code. The method should also return the total bit
length of the file if all the characters are encoded using their Huffman codes.

private static Map<Character, Integer> makeFrequencyMap(Scanner in)

private static int computeCharacterCount(Map<Character, Integer> map)

private static int printHuffmanCodes(Map<Character, Integer> frequencyMap,
 Map<Character, String> encodingMap)

 2

• The main() method should:
o Create a file Scanner for the input text file GettysburgAddress.txt.

(The input file is already loaded into Codecheck.)
o Create a Huffman tree and its encoding map.
o Call the above methods appropriately.
o Print the total number of characters and the total number of bits required to

encode the file using UTF-8 encoding (the way text files are normally
encoded).

o Print the total number of bits required to encode all the input file’s characters
using their Huffman codes.

o Print the percentage reduction in bit length of the input file from using the
UTF-8 code to using the Huffman code.

Note that you are not expected to actually encode the input file using Huffman coding. Just
calculate how many bits it would take to do the encoding.

 3

Expected output

Codecheck URL:
http://codecheck.it/codecheck/files/1508010323ehsg28urjg6q8sjsian3rrpmi

Canvas: Homework 10 Final (there is no draft)
Due: Wednesday, August 5 at 11:59 PM

 1459 total characters
11672 total UTF-8 bits

Character Frequency Code
 \n 25 101010
 space 244 111
 , 23 100001
 - 8 11001011
 . 10 1010000
 B 1 0010010000
 F 1 0010010011
 G 1 0010010001
 I 3 001001011
 N 1 0010010010
 T 2 1100101001
 W 2 001001010
 a 102 1011
 b 13 1010001
 c 31 110011
 d 58 11010
 e 165 011
 f 26 101011
 g 27 110001
 h 80 0101
 i 65 11011
 k 3 110010101
 l 42 00101
 m 13 1100100
 n 76 0011
 o 93 1001
 p 15 001000
 q 1 1100101000
 r 79 0100
 s 44 10001
 t 124 000
 u 21 100000
 v 24 101001
 w 26 110000
 y 10 0010011

 6200 total Huffman-encoded bits
46.9% reduction

