Show two different derivation trees.

```
<s>  ⇒ <np><vp> | <vp><pp>
<np> ⇒ <adj><n> | <art><n> | <n>
<vp> ⇒ <v><np>
<pp> ⇒ <p><np>
<adj> ⇒ time
<art> ⇒ an
<n>  ⇒ arrow | flies | time
<p>  ⇒ like
<v>  ⇒ like | time
```

```
time flies like an arrow
```
Midterm #2 Solutions: Question 2

- There is no way that the PDA’s stack can remember an input sequence of symbols in its original order.
Midterm #2 Solutions: Question 3a

- Language L_1 is nondeterministic because its PDA cannot know where is the middle of an input string (i.e., where w ends and w^R begins), and so the PDA must do backtracking to accept or reject the string.

- L_3 is deterministic because the $@$ symbol allows its PDA to know exactly where w ends and w^R begins, and so the PDA does not need to backtrack.
Midterm #2 Solutions: Question 3b

\[\Gamma = \{a, b, z\} \]

stack start symbol = \(z \)

\[\text{Start} \]

\[\text{Read} \]

- Push \(a \)
- Read \(b \)

\[\text{Pop} \]

- \(a \) to \(b \)

\[\text{Pop} \]

- \(b \) to \(\lambda \)

\[\text{Pop} \]

- \(z \) to \(\text{Accept} \)
Midterm #2 Solutions: Question 4

- **Super Calculator** \(G = \{V, T, S, P\} \)
 - \(V = \{<\text{expression}>, <\text{simple expression}>, <\text{term}>, <\text{power}>, <\text{factor}>, <\text{relop}>, <\text{addop}>, <\text{mulop}>, <\text{number}>, <\text{digits}>, <E>, <\text{sign}>\} \)
 - \(T = \{+,-,\ast,\div,\wedge,\text{==,!=,<,<=,>,>=,&&,||,!} (,) 0 1 2 3 4 5 6 7 8 9 . E e\} \)
 - \(S = <\text{expression}> \)
Super Calculator $G = \{V, T, S, P\}$ cont’d

P is the set of productions

\[
\begin{align*}
<\text{expression}> & \rightarrow <\text{simple expression}> \\
& \quad | <\text{simple expression}> <\text{relop}> <\text{simple expression}>
\end{align*}
\]

\[
<\text{relop}> \rightarrow == | != | < | <= | > | >=
\]

\[
<\text{simple expression}> \rightarrow <\text{term}> (<\text{addop}> <\text{term}>)* \\
<\text{addop}> \rightarrow + | - | || \\
<\text{term}> \rightarrow <\text{power}> (<\text{mulop}> <\text{power}>)* \\
<\text{mulop}> \rightarrow * | / | && \\
<\text{power}> \rightarrow <\text{factor}> (^ <\text{power}>)* \\
<\text{factor}> \rightarrow <\text{number}> | - <\text{factor}> | ! <\text{factor}> | (<\text{expression}>) \\
<\text{number}> \rightarrow <\text{digits}> | <\text{digits}> . <\text{digits}> \\
& \quad | <\text{digits}> <E> <\text{sign}> <\text{digits}> \\
& \quad | <\text{digits}> . <\text{digits}> <E> <\text{sign}> <\text{digits}>
\]

\[
<\text{digits}> \rightarrow (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)+
\]

\[
<\text{E}> \rightarrow e | E \\
<\text{sign}> \rightarrow + | - | \lambda
\]
Midterm #2 Solutions: Question 5

- Let $G = \{V, T, S, P\}$ be the grammar for language L. Since L is context-free, its productions in P all have the form $A \rightarrow x$ where $A \in V$ and $x \in (V \cup T)^*$.

- Construct the context-free grammar $G^T = \{V, T, S, P^T\}$ for language L^T where each production in P_T is $A \rightarrow x^R$. Then for every sentential for w of grammar G, w^R is a sentential form for grammar G^T.
Midterm #2 Solutions: Question 6

- Each string in the language \(L = \{a^n b a^{2n} b a^{3n} : n \geq 0\} \) consists of three groups of \(a \)'s separated by \(b \)'s, and the lengths of the groups of \(a \)'s are in the ratio 1 : 2 : 3. Decompose a string as \(uvxyz \).

- Neither \(v \) nor \(y \) can contain a \(b \), otherwise pumping will change the number of \(b \)'s. Therefore, at least one group of \(a \)'s is not contained in either \(v \) or \(y \). Pumping will break the ratio 1 : 2 : 3. The pumping lemma is violated, and so \(L \) cannot be context-free.