Midterm #1 Solutions: Question 1

- \(L_G = \{ \text{Guten, Tag, Katzen, Gesundheit} \} \)
 \(L_F = \{ \text{Bonjour, Au, Revoir, Amour} \} \).

a. An example member of \(L_G L_F \)
 - A word from \(L_G \) concatenated with a word from \(L_F \)
 - KatzenAmour

b. An example member of \(L_F L_G \)
 - A word from \(L_F \) concatenated with a word from \(L_G \)
 - BonjourGesundheit
Midterm #1 Solutions: Question 1, cont’d

- \(L_G = \{\text{Guten, Tag, Katzen, Gesundheit}\} \)
- \(L_F = \{\text{Bonjour, Au, Revoir, Amour}\} \).

c. Three different example members of \(L_F^* - L_F \)

- \(\lambda \) plus concatenations of any number of words from \(L_F \) but not single words.
- \(\lambda, \text{AuRevoir, AmourBonjourAmour} \)

d. Three different example members of \(L_F \cup L_G \)

- Single words from either \(L_F \) or \(L_G \)
- \(\text{Bonjour, Guten, Katzen} \)
Midterm #1 Solutions: Question 1

- $L_G = \{Guten, Tag, Katzen, Gesundheit\}$
- $L_F = \{Bonjour, Au, Revoir, Amour\}$.

e. Three different example members of $(L_F \cup L_G)^*$

- λ plus concatenations of any number of words from either L_F or L_G in any order.
- Bonjour, GutenTag, AuRevoirKatzen
Consider the DFA

What strings will the DFA accept?

- All strings whose symbols alternate between 0 and 1.
b. Use JFLAP to test your answer with at least four sample strings that are accepted and at least two sample strings that are rejected.
Let $\Sigma = \{a, b\}$.

a. Use JFLAP to construct a DFA that accepts all strings in Σ^* that contain a double letter, and test your DFA with some sample strings.

- We want at least one double letter aa or bb to appear anywhere in the string.
- We don’t care if any other a’s or b’s appear before or after the double letter.
b. Write a regular expression that accepts the same strings.

\[(a + b)^* (aa + bb)(a + b)^*\]
Consider this matrix that represents a simple maze:

Starting from cell S, you can move horizontally or vertically but not diagonally from one numbered cell to an adjacent cell in order to reach the goal of cell F.

$$
\begin{array}{ccc}
S & 1 & 2 & 3 \\
4 & & 5 & \\
6 & & 7 & \\
8 & & 9 & F \\
\end{array}
$$
a. Create an NFA using JFLAP as follows:
Represent each numbered cell by a state. Draw edges between the states to represent the allowable paths. Label each edge with the symbol a.

Here, q_0 is state S and q_{10} is state F.
b. How can you use input strings for your NFA to determine the length of the shortest path from S to F?

- Since each edge is labeled with the symbol a, input to the NFA are strings containing only a’s.

- Successively feed the NFA strings of a’s of length 1, 2, 3, etc.

- The length of the first string that the NFA accepts must be the length of the shortest path from S to F.
c. What happens to input strings that are longer than the length of the shortest path?

- Each string of length 8, 10, 12, etc. causes the NFA to move back and forth between two states before proceeding to state F, or from state F to state 9 and back to state F.

- Therefore, the NFA accepts all strings whose lengths are 6 or longer and an even number, and it rejects all other strings.
Midterm #1 Solutions: Question 4, cont’d

d. Use JFLAP and your NFA to demonstrate your answers to the previous two questions.
e. Use JFLAP to automatically convert your NFA to a minimal DFA. Test your DFA with the same input strings that you used for the NFA.
f. Explain the difference in performance between the NFA and the DFA.

- From a given state of the NFA and an input symbol \(a \), there can be choices of where to move next.
- Therefore, to determine whether or not to accept a string, the NFA may have to backtrack to try other paths in order to find one that accepts the string.
- From a given state of the DFA and an input symbol \(a \), there can be only one possible move.
- Therefore, the DFA does no backtracking to determine whether or not to accept a string.
Construct a grammar that generates the language \(L = \{a^n b^n c^i : n > 0, \ i \geq 0\} \). Test your grammar using JFLAP with sample strings, some that are accepted and others that are rejected.

- At least one group of consecutive \(a \)'s and consecutive \(b \)'s precede the optional group of consecutive \(c \)'s.
- The number of \(a \)'s equals the number of \(b \)'s.
- Each string in \(L \) has two parts, \(a^n b^n \) and \(c^i \).
- Therefore, generate each part from a separate production rule, say with nonterminal \(A \) for the \(a^n b^n \) part and nonterminal \(B \) for the \(c^i \) part.
- Then we must include the rules \(A \rightarrow ab \) and \(B \rightarrow \lambda \).
Midterm #1 Solutions: Question 5, cont’d