Assignment #7: Problem 1

□ Show that the set of recursively enumerable languages is closed under union.

Let L_1 and L_2 be two recursively enumerable languages, and M_1 and M_2 be their accepting Turning machines, respectively.

Let M_{union} be a TM that comprises M_1 and M_2 running in parallel. Why do they have to run in parallel?

An input string w is accepted by M_{union} if it is accepted by either M_1 or M_2 or both.

M_{union} is a TM that accepts $L_1 \cup L_2$ and therefore the set of recursively enumerable languages is closed under union.
Show that the set of **recursively enumerable** languages is closed under **intersection**.

- Similar to the proof for union.
- Let $M_{\text{intersect}}$ be a TM that comprises M_1 and M_2.

An input string w is accepted by $M_{\text{intersect}}$ if it is accepted by both M_1 and M_2. Since both need to halt and accept, they can run serially.

$M_{\text{intersect}}$ is a TM that accepts $L_1 \cap L_2$ and therefore the set of recursively enumerable languages is closed under intersection.
Show that the set of **recursive** languages is closed under **union** and **intersection**.

- Similar to proofs for recursively enumerable languages, except that we don’t have to run M_1 and M_2 in parallel – one after the other will do.

- But because L_1 and L_2 are recursive, we know that their membership TMs M_1 and M_2 will always halt.

- Therefore, M_{union} and $M_{\text{intersect}}$ will always halt, and so the set of recursive languages is closed under union and intersection.
Show that the set of recursive languages is closed under reversal.

Let L be a recursive language and M be its membership TM.

Then we can construct an membership TM for L^R that reverses its input string and then calls TM M.

Therefore, the set of recursive languages is closed under reversal.
Assignment #7: Problem 4

- Show that language L is recursive if it is accepted by a nondeterministic Turing machine that always halts on any input string.

- Theorem 10.2 of the textbook says that any nondeterministic TM can be simulated by (and is therefore equivalent to) a standard deterministic TM.

- Therefore, if the TM always halts, then L must be recursive.
Assignment #7: Problem 5

Suppose a language L has a function f such that $f(w) = 1$ if $w \in L$ and $f(w) = 0$ otherwise. Show that function f is Turing-computable if and only if the language L is recursive.

- Let L be recursive.
- Then L must have a membership TM M that always halts.
- Therefore, the TM for f simply feeds its input string w into M and outputs M’s result as its own.
Suppose a language L has a function f such that $f(w) = 1$ if $w \in L$ and $f(w) = 0$ otherwise. Show that function f is Turing-computable if and only if the language L is recursive.

- Let f be computable.

- Then f has a TM F that for input string w outputs either 1 or 0 depending on whether or not it accepts w.

- Therefore, the TM for L simply feeds its input into F and outputs F’s result as its own.
Let D be a recursive language of string pairs $<x, y>$. Let C be the set of all strings x for which there exists some y such that $<x, y> \in D$. Show that C is recursively enumerable.

Since D is recursive, it has a membership TM M_D that always halts.

Construct a TM M_C that, for each input string x, it can generate all possible strings y in proper order.

For each generated y, M_C calls M_D with the pair $<x, y>$.

M_C accepts x if M_D halts and accepts some pair $<x, y>$.

Given x, M_C might never find a y such M_D accepts $<x, y>$, and so M_C might not halt.
Assignment #7: Problem 7

- Let C be a recursively enumerable language. Show that there exists a recursive language D of string pairs such that C contains exactly the strings x such that there exists some y such that $<x, y> \in D$.

- Let TM M_C accept C. Create a TM M_D.
- For each $x \in C$, choose a string y that represents a positive integer.
- M_D simulates M_C on x and lets M_C run at most y steps.
- If M_C accepts x within y steps, then M_D accepts $<x, y>$.
- Therefore, M_D defines the recursive language D.

Why limit the number of steps?