Recursively enumerable and recursive languages

1. [10 points] Use Turing machines to show that the set of \textit{recursively enumerable} languages is closed under union and intersection.

2. [10 points] Use Turing machines to show that the set of \textit{recursive} languages is closed under union and intersection.

3. [10 points] Show that the set of \textit{recursive} languages is closed under reversal. Closed under reversal means that if a language \(L \) is recursive, then the language \(L^R \) containing all the strings of \(L \) reversed is also recursive.

4. [10 points] Suppose language \(L \) is accepted by a \textit{nondeterministic} Turing machine that always halts on any input string. Show that \(L \) is recursive.

5. [20 points] Suppose a language \(L \) has a function \(f \) such that \(f(w) = 1 \) if \(w \in L \) and \(f(w) = 0 \) otherwise. Show that function \(f \) is Turing-computable if and only if the language \(L \) is recursive.
6. [20 points] Let D be a recursive language of string pairs $<x, y>$. Let C be the set of all strings x for which there exists some y such that $<x, y> \in D$. Show that C is recursively enumerable.

7. [20 points] Let C be a recursively enumerable language. Show that there exists a recursive language D of string pairs (see Problem 6) such that C contains exactly the strings x such that there exists some y such that $<x, y> \in D$.

What to submit to Canvas

Submit your answers in a Word document or PDF into Canvas: Assignment #7