The Pumping Lemma for Regular Languages

- Let L be an infinite regular language.
- Then for any string $w \in L$, there exists a positive integer m such that we can decompose w into xyz, where

 - $|w| \geq m$
 - $|xy| \leq m$
 - $|y| \geq 1$
 - And $w_i = xyz$ is also in L for all $i = 0, 1, 2, \ldots$

We might not know what value m has, only that it exists.

In particular, when $i = 0$, the string xz is in L.
The Pumping Lemma for RLs, cont’d

- We use the pumping lemma to prove that a given language L is not regular.

- We do so using a proof by contradiction.

- Assume that L is regular.

- And so the pumping lemma must hold for all strings w in L.

- Show that this leads to a contradiction.

- Therefore, the original assumption that L is regular must not be true and L is not regular.
Assignment #3: Question 1

- Use the pumping lemma to show that the language $L = \{a^n : n \text{ is a perfect cube: } 0, 1, 8, 27, \ldots \}$ is not regular.

- Assume that L is regular and so the pumping lemma must hold for any string w in L.

- Choose $w = xyz = a^m$ with $|xy| \leq m$ and $|y| \geq 1$.

- Since $w_i = xy^iz$ is in L for all $i = 0, 1, 2, \ldots$, choose $i = 3$: $w_3 = xy^3z$

- $|xy^3z| = |xyz| + 2|y| = m^3 + 2|y|$

- But $|y| \leq m$ since $|xy| \leq m$, and so $|xy^3z| = m^3 + 2|y| \leq m^3 + 2m < (m + 1)^3$

- Also since $|y| \geq 1$, $|xy^3z| = m^3 + 2|y| > m^3$

- So $m^3 < |xy^3z| < (m + 1)^3$ and so $|xy^3z|$ cannot be a perfect cube since it’s between two consecutive perfect cubes.

- Therefore, xy^3z is not in L, a contradiction, and so L is not regular.
Assignment #3: Question 1 (Alternate)

- Use the pumping lemma to show that the language \(L = \{a^n : n \text{ is a perfect cube: } 0, 1, 8, 27, \ldots \} \) is not regular.

- Assume that \(L \) is regular and so the pumping lemma must hold for any string \(w \) in \(L \).

- Choose \(w = xyz = a^{m^3} \) with \(|xy| \leq m \) and \(|y| \geq 1 \).

- Then \(y = a^k \) for some \(1 \leq k \leq m \).

- The pumped strings will be \(w_i = a^{m^3 + (i-1)k} \) for \(i = 0, 1, 2, \ldots \)
 - \(w_0 \) is the string that does not contain \(y \).

- But \(w_2 = a^{m^3+k} \notin L \) because \(m^3 < m^3 + k < m^3 + m < (m + 1)^3 \)
 - i.e., \(|w_2| \) is between two consecutive perfect cubes.

- This is a contradiction, so \(L \) is not regular.
Assignment #3: Question 2

- Use the pumping lemma to show that the language \(L = \{a^n : n \text{ is a power of } 2: 1, 2, 4, 8, \ldots\} \) is not regular.

- Assume that \(L \) is regular and so the pumping lemma must hold for any string \(w \) in \(L \).

- Let \(p \) be the smallest integer such that \(2^p > m \).

- Choose \(w = xyz = a^{2^p} \) and then \(y = a^k \) for some \(1 \leq k \leq m \).

- The pumped strings will be \(w_i = a^{2^p + (i-1)k} \) for \(i = 0, 1, 2, \ldots \)
 - \(w_0 \) is the string that does not contain \(y \).

- But \(w_2 = a^{2^p + k} \notin L \) because \(2^p < 2^p + k \leq 2^p + m < 2^p + 2^p = 2^{p+1} \)
 - i.e., \(|w_2| \) is between two consecutive powers of 2.

- This is a contradiction, so \(L \) is not regular.
Assignment #3: Question 3

- Use the pumping lemma to show that the language $L = \{a^{pq} : p$ and q are both prime numbers\} is not regular.

- Assume that L is regular and so the pumping lemma must hold for any string w in L.

- Let p and q be the smallest primes such that $pq \geq m$.

- Choose $w = xyz = a^{pq}$ and then $y = a^k$ for some $1 \leq k \leq m$.

- The pumped strings will be $w_i = a^{pq + (i-1)k}$ for $i = 0, 1, 2, \ldots$

 - w_0 is the string that does not contain y.

- But $w_{pq+1} = a^{pq + pqk} \notin L$ because $pq + pqk = pq(1 + k)$ which is not a product of two primes.

- This is a contradiction, so L is not regular.
Assignment #3: Question 4

- Use the pumping lemma to show that the language $L = \{a^p b^q : p \text{ divided by } q \text{ is an integer quotient}\}$ is not regular.

- Assume that L is regular and so the pumping lemma must hold for any string w in L.

- Choose $w = a^m b^m$ and then $y = a^k$ for some $1 \leq k \leq m$.

- In the pumped strings, choose $i = 0$ to remove y from the first half of w and so $(m-k)/m$ is not integer.

- This is a contradiction, so L is not regular.
Assignment #3: Question 5

- Use the pumping lemma to show that the language \(L = \{a^p b^q : p + q \text{ is a prime number}\} \) is not regular.

- Assume that \(L \) is regular and so the pumping lemma must hold for any string \(w \) in \(L \).

- Choose \(w = a^m b^{p-m} \) where \(p > m \) is a prime number.

- Choose \(y = a^k \) for some \(1 \leq k \leq m \).

- The pumped strings will be \(w_i = a^{m+(i-1)k} b^{p-m} \) for \(i = 0, 1, 2, \ldots \)
 - \(w_0 \) is the string that does not contain \(y \).

- But \(w_{p+1} = a^{m+pk} b^{p-m} \not\in L \) because \((m + pk) + (p - m) = p(1 + k)\)
 and so the sum of the two exponents is not prime.

- This is a contradiction, so \(L \) is not regular.
Assignment #3: Question 6

- Let $\Sigma = \{0, 1, +, =\}$. Use the pumping lemma to show that the language $L = \{b_1=b_2+b_3 : b_1, b_2, b_3$ are binary integers, and b_1 is the sum of b_2 and $b_3\}$ is not regular. For example, the string $1001=10+111$ is in L.

- Assume that L is regular and so the pumping lemma must hold for any string w in L.

- Choose $w = xyz$ be the string $1^m=0^m+1^m$.

 - Example: $11111=00000+11111$

- And so $y = 1^k$ for some $1 \leq k \leq m$.

- Then xy^2z is the string $1^{m+k}=0^m+1^m$ which is not in L.

- This is a contradiction, so L is not regular.
Assignment #3: Question 7

- Let language L be denoted by the regular expression a^*b^*. What is wrong with the following “proof” that L is not regular? Of course, L is regular.

Assume that L is regular. Then it must be defined by a DFA with k states, for some integer $k > 0$. Take the string $w = a^kb^k$ and split it $w = xyz$, with $y = ab$. Then wy^2z is not in L, which contradicts the pumping lemma. Therefore, L cannot be regular.

- Since $|xy| \leq m$, setting $y = ab$ says that $m = |a^*| + 1$.

- But the pumping lemma states that there there exists a positive integer m, so even if $m = |a^*| + 1$ doesn’t work for the lemma, there could be another value for m that does.

- For example, if $m \leq |a^*|$ and y is all a’s, the lemma holds.
Prove whether or not language
$L = \{ a^{p+qi} : p$ and q are fixed integer values, and $i \geq 0 \}$
is regular.

The language is regular because its strings are denoted by the regular expression $a^p(a^q)^*$.
Assignment #3: Question 9

☐ Prove whether or not language
\[L = \{ a^p b^q : p \geq 100 \text{ and } q \geq 100 \text{ are fixed integer values} \} \]
is regular.

☐ The language is regular because its strings are denoted by the regular expression \(a^{100}a^*b^{100}b^* \).
Assignment #3: Question 10

Assume that `<stmt>`, `<if_stmt>`, `<boolexpr>`, and `<assign_stmt>` are nonterminal symbols, and `if`, `else`, `(`, and `)` are terminal symbols.

Here’s a grammar written in BNF for Java-style IF statements:

```
<stmt> ::= <assign_stmt> | <if_stmt>
<if_stmt> ::= if ( <boolexpr> ) <stmt>
             | if ( <boolexpr> ) <stmt> else <stmt>
```

How is this grammar ambiguous? Give an example of an ambiguity.
Assignment #3: Question 10, cont’d

An if statement has an optional else part.

An if statement contains one or two statements, each of which can in turn be an if statement.

The grammar is **ambiguous**.

In the statement

\[
\text{if (a == b) if (c == d) x = 1 else y = 1}
\]

To which if statement does the else part belong?

- **Is it**
 \[
 \text{if (a == b) if (c == d) x = 1 else y = 1}
 \]

- **Or**
 \[
 \text{if (a == b) if (c == d) x = 1 else y = 1}
 \]

Most languages take the first choice.