

1

San José State University
Department of Computer Science

CS/SE 153

Concepts of Compiler Design

Fall 2024
Instructor: Ron Mak

Assignment #2
Assigned: Thursday, August 29

Due: Thursday, September 5 at 4:00 PM
 Team assignment, 100 points max

Pascal scanner
The purpose of this assignment is to give you practice writing a scanner for Pascal.
Start with the Scanner and Token classes in Simple.zip that we went over in class. It
can already handle the following Pascal reserved word tokens:

AND ARRAY BEGIN CASE CONST
DIV DO DOWNTO ELSE END
FILE FOR FUNCTION GOTO IF
IN LABEL MOD NIL NOT
OF OR PACKED PROCEDURE PROGRAM
RECORD REPEAT SET THEN TO
TYPE UNTIL VAR WHILE WITH

It can also recognize these tokens:

Modify the classes Scanner and Token to recognize all the Pascal one-character and
two-character special symbol tokens:

. , : := ; + - * / ()
= <> < <= > >= .. ' [] ^

IDENTIFIER INTEGER REAL CHARACTER STRING END_OF_FILE ERROR

http://www.cs.sjsu.edu/~mak/CS153/code/Simple.zip

2

Class Token already has defined enumeration constants for them:

You can make any modifications that you deem necessary to the other classes.

Comments
Your Scanner class should treat each comment as it would treat a blank. Like blanks,
comments should be skipped and ignored. Pascal comments are enclosed in curly
braces { and }.

Strings and character literals
You will need to modify the string() method in class Token.

A literal Pascal string is enclosed in single quotes. If a single quote character is part of a
string, it is represented by two consecutive single quotes. For example, 'It''s'
contains the characters It's. It is possible to have the empty string: ''

A literal Pascal character is simply a string with only one character. For example: 'a'.

Your scanner should distinguish between Pascal literal strings and characters.

Test files
First test your code on test input file EmployeeListing.pas from Assignment #1.

Then test input file ScannerTest.txt will give your Scanner and Token classes a
good workout. It consists of Pascal tokens, often run together the way they would never
appear in a valid Pascal program. Your scanner should still be able to extract them.

// Special symbols
PERIOD, COMMA, COLON, COLON_EQUALS, SEMICOLON,
PLUS, MINUS, STAR, SLASH, LPAREN, RPAREN,
EQUALS, NOT_EQUALS, LESS_THAN, LESS_EQUALS,
GREATER_THAN, GREATER_EQUALS, DOT_DOT, QUOTE,
LBRACKET, RBRACKET, CARAT

3

Expected output
Your output for input file ScannerTest.txt should be similar to the following:

{This is a comment.}

{This is a comment
 that spans several
 source lines.}

Two{comments in}{a row} here

{Word tokens}
Hello world
begin BEGIN Begin BeGiN begins

{String tokens}
'Hello, world.'
'It''s Friday!'
''
'A' 'x' ''''
' '' '' ' ''''''
'This string
spans
source lines.'

{Special symbol tokens}
+ - * / := . , ; : = <> < <= >= > () [] { } } ^ ..
+-:=<>=<==.....

{Number tokens}
0 1 20 00000000000000000032 31415926
3.1415926 3.1415926535897932384626433 .14

{Bad tokens}
3.14.15926
What?
'String ''not'' closed

4

Tokens:

 IDENTIFIER : Two
 IDENTIFIER : here
 IDENTIFIER : Hello
 IDENTIFIER : world
 BEGIN : begin
 BEGIN : BEGIN
 BEGIN : Begin
 BEGIN : BeGiN
 IDENTIFIER : begins
 STRING : 'Hello, world.'
 STRING : 'It's Friday!'
 STRING : ''
 CHARACTER : 'A'
 CHARACTER : 'x'
 CHARACTER : '''
 STRING : ' ' ' '
 STRING : ''''
 STRING : 'This string
spans
source lines.'
 PLUS : +
 MINUS : -
 STAR : *
 SLASH : /
 COLON_EQUALS : :=
 PERIOD : .
 COMMA : ,
 SEMICOLON : ;
 COLON : :
 EQUALS : =
 NOT_EQUALS : <>
 LESS_THAN : <
 LESS_EQUALS : <=
GREATER_EQUALS : >=
 GREATER_THAN : >
 LPAREN : (
 RPAREN :)
 LBRACKET : [
 RBRACKET :]
TOKEN ERROR at line 24: Invalid token at '}'
 ERROR : }
 CARAT : ^
 DOT_DOT : ..
 PLUS : +
 MINUS : -
 COLON_EQUALS : :=
 NOT_EQUALS : <>
 EQUALS : =
 LESS_EQUALS : <=
 EQUALS : =
 DOT_DOT : ..
 DOT_DOT : ..
 PERIOD : .
 INTEGER : 0
 INTEGER : 1
 INTEGER : 20
 INTEGER : 00000000000000000032
 INTEGER : 31415926
 REAL : 3.1415926
 REAL : 3.1415926535897932384626433
 PERIOD : .
 INTEGER : 14
TOKEN ERROR at line 32: Invalid number at '3.14.15926'
 ERROR : 3.14.15926
 IDENTIFIER : What
TOKEN ERROR at line 33: Invalid token at '?'
 ERROR : ?
TOKEN ERROR at line 34: String not closed at ''String 'not' closed'
 STRING : 'String 'not' closed

5

What to submit to Canvas

• A new version of Simple.zip that includes all your Java sources, including your
modified Scanner and Token classes.

• Text files of output from running your scanner on the two input files
EmployeeListing.pas and ScannerTest.txt.

Submit to Assignment #2: Pascal Scanner

Rubric
Your submission will be graded according to these criteria:

Criteria Maximum points
Reserved words handled properly. 20
Special symbols handled properly. 40
Token errors handled properly. 30
Good output format. 10

There should be only one submission per team.

