
 1

CS 152 / SE 152
Programming Language Paradigms

Spring Semester 2014

Department of Computer Science

San Jose State University
Prof. Ron Mak

Assignment #5
Assigned: Wednesday, April 2

Due: Wednesday, April 16 at 11:59 pm
 Team assignment, 100 points max

Scheme parser and scanner

Use Java to write a parser and a scanner for Scheme.

Your scanner should recognize Scheme tokens. It should print each source input line
after it reads the line. For each token, your scanner should print the token string and the
token type (symbol, number, keyword, etc.), one token per output line. It should ignore
comments.

Symbol table

The parser should enter each symbol into a symbol table. It should not enter keywords..
For this assignment, the attributes of each symbol table entry can be null. Also for this
assignment, you won’t deal with scope, so you’ll need only one symbol table.

What is a symbol? It’s anything that can be bound to a value at run time. It’s anything
that returns #t when the predicate symbol? is applied to it:

(symbol? 'alpha) #t
(symbol? '+) #t
(symbol? #\r) #f
(symbol? 132) #f
(symbol? #t) #f

Therefore, enter alpha and other identifiers into the symbol table. Enter + into the
symbol table. But do not enter characters, numbers, or boolean values.

 2

Special symbols

Special symbols are the punctuation marks of Scheme. They are not symbols and
therefore should not go into the symbol table. Special symbols include:

() [] { } ; , . " ' # \

Numbers

Your scanner should recognize both integer and real numbers. It can simply call either
one a “number”. Numbers do not go into the symbol table.

Keywords

Your scanner should recognize Scheme keywords. They do not go into the symbol table.

and begin begin0 break-var case cond cycle define
delay delay-list-cons do else extend-syntax for

freeze if lambda let letrec let* macro object-maker
or quote repeat safe-letrec set! stream-cons

variable-case while wrap

Lists

Your parser should translate lists by building the intermediate code (binary parse trees).

After your parser has completed parsing a top-level list and built the intermediate code
and the symbol table, your back end should take over.

Backend

Your back end should walk the binary parse tree and print the list with the proper
parentheses. The printed list does not need to be “pretty” but it must be correct. You can
start each sublist on a new line after an indent.

For example:

can print as

(define proc
 (lambda (a b)
 (let ((sum (+ a (func b))))
 sum)))

(define proc
 (lambda
 (a b)
 (let
 (
 (sum
 (+ a
 (func b)))) sum)))

 3

Your back end should also print the contents of the symbol table in alphabetical order.
(Hint: Use a Java TreeMap instead of a Hashtable or Hashmap for the symbol table.)

Clear the intermediate code and the symbol table before parsing the next top-level list.

Program structure

Ensure that your code is properly structured by putting your classes into three packages:
frontend, intermediate, and backend.

Input file

Parse the two top-level lists in following file input.lisp:

You may assume that the input file does not contain any syntax errors.

Your program can read the input file as standard input, or a command-line parameter
can be the file path.

; Find the derivative of polynomial poly with repect to variable var.
; The polynomial must be in canonical infix form.
(define deriv
 (lambda (poly var)
 (let* ((terms (terminize poly)) ; "terminize" the polynomial
 (deriv-term ; local procedure deriv-term
 (lambda (term)
 (cond
 ((null? term) '())
 ((not (member? var term)) '(0)) ; deriv = 0
 ((not (member? '^ term)) (upto var term)) ; deriv = coeff
 (else (deriv-term-expo term var)) ; handle exponent
)))
 (diff (map deriv-term terms))) ; map deriv-term over the terms
 (remove-trailing-plus (polyize diff)) ; finalize the answer
)))

; Convert an infix polynomial into a list of sublists,
; where each sublist is a term.
(define terminize
 (lambda (poly)
 (cond
 ((null? poly) '())
 (else (cons (upto '+ poly) (terminize (after '+ poly))))
)))

 4

What to turn in

Each team turns in one zip file containing

• The source directory containing all your Java source files.
• A text file of the output from your program.

Name your zip file after your team, such as SuperProgrammers.zip.
Email to: ron.mak@sjsu.edu. Your subject line should say

CS 152 Assignment #5 team name

CC all the team members so that I can do a “Reply all” when I send out your score.

This is a team assignment. Each member of the team will receive the same score.

Do not wait until the last minute to start this assignment!

