

1

CS 144
Advanced C++ Programming

Spring 2019
Instructor: Ron Mak

Assignment #7
Assigned: Tuesday, March 19

Due: Tuesday, March 26 at 8:30 AM
CodeCheck: http://codecheck.it/files/1903191036d4rx0uyro3ix2f4mf5u3cdu45

Canvas: Assignment 7. U.S. Maps
Points: 130

U.S. maps
This assignment will give you practice writing a C++ application with a linked list and
multiple classes. You will also further practice reading CSV files.

The output of your program will be two printed maps: an outline of the continental United
States and the same outline with major cities superimposed on it.

You will complete four classes, Coordinate, City, Node, and SortedLinkedList.
You are provided the complete source for main application, MapMaker.cpp.

Input files
Your program will read two CSV (comma-separated value) files as input data.

Input file boundary-data.csv contains the geographic coordinates of locations along
the border of the U.S. Each line of the file contains one coordinate consisting of two
double values separated by a comma:

latitude,longitude
Some example lines from the file:

The lines are not sorted in any particular order.

34.299084,-119.362617
29.47158,-83.302581
28.707351,-82.653682
32.342609,-114.426405
34.044824,-118.532846

2

Input file city-data.csv contains the names and states of major U.S. cities and their
geographic coordinates. Each line of the file contains a city name, state abbreviation,
and the latitude and longitude of the city’s geographic coordinates, all separated by
commas:

name,state,latitude,longitude

A few lines from the file:

The lines are sorted in alphabetical order by city name.

Input file boundary-data.csv:
http://www.cs.sjsu.edu/~mak/CS144/assignments/7/boundary-data.csv

Input file city-data.csv:
http://www.cs.sjsu.edu/~mak/CS144/assignments/7/city-data.csv

These input files are already uploaded to CodeCheck.

Reading comma-separated values
Your program must overload the input stream extraction operator >> to read the
boundary and city CSV files.

To read the comma-separated values, you can use the getline function. It has an
optional parameter to specify a delimiter character, such as the comma. See
http://www.cplusplus.com/reference/string/string/getline/

San Francisco,CA,37.775,-122.4183333
San Jose,CA,37.3394444,-121.8938889
Santa Fe,NM,35.6869444,-105.9372222
Savannah,GA,32.0833333,-81.1
Seattle,WA,47.6063889,-122.3308333

3

U.S. boundary map
Your program must first read input file border-data.csv to print this boundary map:

To generate the map, your program must read the file and create a Coordinate object
from each input line. Class Coordinate must have a friend that overloads the input
stream extraction operator >> to read each coordinate. Your program must create a
Node object from each Coordinate object. The Node constructor must convert each
coordinate to a print position. You are provided the Node member function
convert_coordinate that maps a latitude to a row number and a longitude to a
column number.

=============
U.S. boundary
=============

 ##
 # # # # # # # # # # ##

 # # #
 # #
 # # #
 # # #
 # #
 # # # #
 # # # # #
 # # #
 # ##
 # ## # #
 # # #
 # #
 # #
 # #

 # #
 #

 # #
 #
 # #
 # #

 # #
 #
 #
 #
 ###
 # #
 #
 # #
 # # #
 ## # #
 # # # #
 ## #
 # # # #
 # # # ### ## # #
 # # # # # ##
 # # # # # #
 # # #
 # # #
 # # #
 #
 # # #
 # #
 # #

4

Your program must use a sorted linked list that is an instance of class
SortedLinkedList. It must enter each Node object into the correct position of the
linked list, which it must maintain sorted by row number and then by column number
(similarly to the way you would sort a list of people’s names by last name and then by
first name). Once your program has read all the boundary coordinates, it should be able
to iterate over the entire list and generate the boundary map. Class Node must have a
friend that overloads the output stream insertion operator << to print each Node object,
and class SortedLinkedList must have a friend that overloads the << operator to
print the entire list. Class Node must also overload the > operator which
SortedLinkedList::insert uses to compare two nodes when determining the
correct insertion position for a new node.

U.S. cities map
Next, your program must input file city-data.csv to print this cities map:

===========
U.S. Cities
===========

 ##
 # # # # # # # # # # ##

 # *Grand Forks ND# #
 *Seattle WA *Great Falls MT # #
 # *Missoula MT *Bismarck ND # #
 # # #
 *Vancouver WA *Billings MT # #
 # *Portland OR *Aberdeen SD # # #
 #*Salem OR *Saint Paul MN # # # *Bangor ME
 *Green Bay WI # *Colchester VT
 # *Eugene OR *Rapid City SD *Rochester MN *Portland ME
 *Nampa ID*Idaho Falls ID *Sioux Falls SD # ## *Rochester NY #
 # *Pocatello ID *Madison WI # *Buffalo NY*Bennington VT
 *Ashland OR *Rockford IL*Warren MI *Worcester MA
 # *Cedar Rapids IA*Toledo OH *Springfield MA
 *Laramie WY *Omaha NE *Davenport IA #*Cleveland OH *Bridgeport CT
 *Eureka CA *West Valley City UT *Lincoln NE *Paterson NJ
 # *Provo UT *Pittsburgh PA
 # *Denver CO *Indianapolis IN *Wilmington DE
 *Parkersburg WV
 # *Colorado Springs CO*Overland Park KS *Silver Spring MD
 # *Sacramento CA *Louisville KY
 #*San Francisco CA *Wichita KS *Evansville IN #
 #*San Jose CA *Springfield MO *Richmond VA
 *Norfolk VA
 # *Las Vegas NV *Tulsa OK *Nashville TN #
 # *Paradise NV *Santa Fe NM *Fayetteville AR *Knoxville TN
 # *Oklahoma City OK *Charlotte NC
 *Albuquerque NM *Little Rock AR #
 ###
 #*Los Angeles CA *Atlanta GA #
 # *Phoenix AZ *Birmingham AL
 *San Diego CA *Dallas TX *North Charleston SC
 # # # *Tucson AZ *Shreveport LA *Montgomery AL
 ## # # *Savannah GA
 # # # *Hattiesburg MS #
 ## *Mobile AL #
 *Austin TX *Baton Rouge LA *Jacksonville FL
 # # # ### *New Orleans LA #
 # # # *San Antonio TX ##
 # # # # # #
 # # #
 # #*Tampa FL
 # # #
 #
 # # #
 # # *Miami FL
 # #

5

To generate the map, your program must read the file and create a City object from
each input line. Class City must overload the input stream extraction operator >> to
read each city. Your program must create a Node object from each City object. Again,
the Node constructor must convert each coordinate to a print position.

Enter each Node object created from a City object into the sorted linked list that you
had created earlier with the boundary Coordinate objects. Continue to maintain the
sort order by row and then by column. Your city Node objects will become interspersed
with the boundary Node objects already in the list. Once your program has read all the
city data, it should be able to iterate over the entire list and generate the cities map,
which includes the boundary.

The overloaded << operator of class Node must be able to output either a boundary
node or a city node. Note that printing a city overrides printing the boundary. If multiple
cities overlap in the same print row, printing the westernmost city has priority. Therefore,
some cities may not be printed.

CodeCheck will match each map against master copies.

Destructors
Your program must clean up after itself before it terminates by destroying all the objects
that it had created.

Submission into Canvas
When you’re satisfied with your program in CodeCheck, click the “Download” link at the
very bottom of the Report screen to download a signed zip file of your solution. Submit
this zip file into Canvas. You can submit as many times as you want until the deadline,
and the number of submissions will not affect your score. Only your last submission will
be graded.

Submit the signed zip file from CodeCheck into Canvas: Assignment #7. U.S. Maps

Note: You must submit the signed zip file that you download from CodeCheck, or your
submission will not be graded. Do not rename the zip file.

6

Rubric
Your program will be graded according to these criteria:

Criteria Max points
Good output (as determined by CodeCheck)

• Boundary map
• Cities map

35
• 15
• 20

Good program design
• Class Coordinate
• Class City
• Overloaded Node::operator > member function
• Overloaded operator << friend function for class Node
• Overloaded operator >> friend function for class Coordinate
• Overloaded operator >> friend function for class City
• SortedLinkedList::insert member function
• Overloaded operator << friend function for class SortedLinkedList
• Object cleanup

85
• 10
• 10
• 10
• 10
• 10
• 10
• 10
• 10
• 5

Good program style
• Descriptive variable names and meaningful comments.
• Coding style (function declarations before the main, etc.)

10
• 5
• 5

Academic integrity

You may study together and discuss the assignments, but what you turn in must be
your individual work. Assignment submissions will be checked for plagiarism using
Moss (http://theory.stanford.edu/~aiken/moss/). Copying another student’s
program or sharing your program is a violation of academic integrity. Moss is
not fooled by renaming variables, reformatting source code, or re-ordering functions.

Violators of academic integrity will suffer severe sanctions, including academic
probation. Students who are on academic probation are not eligible for work as
instructional assistants in the university or for internships at local companies.

