
 1

San José State University
Department of Computer Engineering

CMPE 180A

Data Structures and Algorithms in C++
Fall 2020

Instructor: Ron Mak

Assignment #13
200 points

Assigned: Tuesday, November 17
Due: Tuesday, November 24 at 5:30 PM

URL: http://codecheck.it/files/20042804593k6s1p5ai99unmsrad1kdmc96

Canvas: Assignment 13: BST and AVL trees
Points: 200

BST and AVL trees
This assignment will give you practice with binary search trees (BST) and balanced
Adelson-Velskii and Landis (AVL) trees.

A tree printer
You are provided a TreePrinter class with a print() function that will print any

arbitrary binary tree. A template for how it prints a tree:

 xx

 /\

 ------------------------------ ------------------------------

 / \

 xx xx

 /\ /\

 -------------- -------------- -------------- --------------

 / \ / \

 xx xx xx xx

 /\ /\ /\ /\

 ------ ------ ------ ------ ------ ------ ------ ------

 / \ / \ / \ / \

 xx xx xx xx xx xx xx xx

 /\ /\ /\ /\ /\ /\ /\ /\

 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

 / \ / \ / \ / \ / \ / \ / \ / \

 xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx

 /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\

 / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \

 xx

http://codecheck.it/files/20042804593k6s1p5ai99unmsrad1kdmc96

 2

TreePrinter can print trees with height up to 5, i.e., up to 32 node values on the

bottom row. An example of an actual printed tree:

Part 1
The first part of the assignment makes sure that you can successfully insert nodes into
and delete nodes from BST and AVL trees.

First, create a BST node by node. You will be
provided the sequence of integer values to insert into
the tree one at a time. Print the tree after each insertion.
The tree will be unbalanced.

Then repeatedly delete the root of the tree. Print the
tree after each deletion to verify that you did the
deletion correctly. Stop when the tree becomes empty.

Second, create an AVL tree, node by node, by
inserting the same sequence of integer values. You
may need to rebalance the tree after an insertion. Print
the tree after each insertion to verify that you are
keeping it balanced.

Then, as you did with the BST, repeatedly delete the
root of your AVL tree. You may need to rebalance the
tree after a deletion. Print the tree after each deletion
to verify that you are keeping it balanced.

Each time you do a rebalancing, print a message
indicating which rotation operation and on which node.
For example:

 24

 /\

 -------------- --------------

 / \

 18 73

 /\ /\

 ------ ------ ------ ------

 / \ / \

 12 19 38 87

 / /\ \

 -- -- -- --

 / / \ \

 10 37 41 90

 \

 \

 64

Insert node 10:

 --- Single right rotation at node 21

Insert node 62:

 62

Insert node 71:

 62

 \

 \

 71

Insert node 29:

 62

 /\

 / \

 29 71

Insert node 88:

 62

 /\

 -- --

 / \

 29 71

 \

 \

 88

 3

A handy AVL tree balance checker:

Expected output for Part 1
See http://www.cs.sjsu.edu/~mak/CMPE180A/assignments/13/Part1-output.txt

Part 2
The second part of the assignment compares the performance of a BST vs. an AVL tree.
Part 2 should be a separate program from Part 1. You will not be provided code for this
part, but you should re-use code from Part 1 with any necessary modifications. Do this
part outside of CodeCheck.

First, generate n random integer values. n is some large number, explained below.
Insert the random integers one at a time into the BST and AVL trees. For each tree,
collect the following statistics for all the insertion operations:

• Probe counts. A probe is whenever you visit a tree node via a pointer to the node
and perform any one of these operations:

o Check whether the node’s left or right child link is null.
o Use the left or right link to go to a child node.
o Access the node’s data value.

If the pointer to the node is null, it is not a node visit and therefore not a probe.

• Comparison counts. A comparison is whenever you compare a node’s data value
to another value. A comparison is generally accompanied by a probe which accesses
the node’s data value.

• Elapsed time in milliseconds.

Do not print the tree after each insertion. Be sure to count probes and comparisons

during AVL tree rotations.

Second, generate another n random integer values. For each of the BST and AVL

trees, count the total probes and comparisons and compute the total elapsed time to
search for each value one at a time. It doesn’t matter whether or not a search succeeds.

int AvlTree::checkBalance(BinaryNode *ptr)

{

 if (ptr == nullptr) return -1;

 int leftHeight = checkBalance(ptr->left);

 int rightHeight = checkBalance(ptr->right);

 if ((abs(height(ptr->left) - height(ptr->right)) > 1)

 || (height(ptr->left) != leftHeight)

 || (height(ptr->right) != rightHeight))

 {

 return -2; // unbalanced

 }

 return height(ptr); // balanced

}

http://www.cs.sjsu.edu/~mak/CMPE180A/assignments/13/Part1-output.txt

 4

Choose values of n large enough to give you consistent timings that you can compare.
Try values of n = 10,000 to 100,000 in increments of 10,000. Slow machines can use a
different range of values for n, such as 5,000 to 50,000 in increments of 5,000.

Print tables of these insertion and search statistics for the BST and AVL trees as
comma-separated values (CSV). Use Excel or any other graphing tool to create the
following graphs, each one containing two plots, one for BST and one for AVL:

• insertion probe counts

• search probe counts

• insertion compare counts

• search compare counts

• insertion elapsed time

• search elapsed time

Generate Excel graphs. First select
the set of data sizes and the BST and
AVL values (three columns) you want
to graph, including column headers.
Choose a scatter plot to insert. Then
select one BST point on the graph,
right-click to bring up the context menu,
and add a polynomial trend line for the
BST points. Add a trend line for the
AVL points. Example graph:

Example graphs for Part 2
Your graphs compare the performances of BST and AVL trees. See the examples in
http://www.cs.sjsu.edu/~mak/CMPE180A/assignments/13/Part2-graphs.pdf. Your
statistics may be different, but the trend lines should be similar, especially when showing
whether BST or AVL performs better.

Code
You can use any code from the lectures or from the textbook or from the Web. Be sure
to give proper citations (names of books, URLs, etc.) if you use code that you didn’t write
yourself. Put the citations in your program comments. Do not copy from another student.

What to submit
Submit into Canvas: Assignment #13:

• The signed zip file from CodeCheck for Part 1.

• A text copy of insertion and search statistics from Part 2.

• Copies (screen shots are OK) of the graphs from Part 2,
or an Excel spreadsheet that contains the graphs.

http://www.cs.sjsu.edu/~mak/CMPE180A/assignments/13/Part2-graphs.pdf

 5

Rubrics

Academic integrity

Criteria Maximum points

Part 1

• BST node insertions done correctly.

• BST node deletions done correctly.

• AVL tree rotations printed correctly.

• The AVL tree remains balanced after each node insertion.

• The AVL tree remains balanced after each node deletion.

100

• 20

• 20

• 20

• 20

• 20

Part 2

• BST insertion statistics

• AVL insertion statistics

• BST search statistics

• AVL search statistics

• Insertion probe counts graph

• Insertion compare counts graph

• Insertion elapsed time graph

• Search probe counts graph

• Search compare counts graph

• Search elapsed time graph

100

• 10

• 10

• 10

• 10

• 10

• 10

• 10

• 10

• 10

• 10

You may study together and discuss the assignments, but what you turn in must be
your individual work. Assignment submissions will be checked for plagiarism using
Moss (http://theory.stanford.edu/~aiken/moss/). Copying another student’s
program or sharing your program is a violation of academic integrity. Moss is
not fooled by renaming variables, reformatting source code, or re-ordering functions.

Violators of academic integrity will suffer severe sanctions, including academic
probation. Students who are on academic probation are not eligible for work as
instructional assistants in the university or for internships at local companies.

http://theory.stanford.edu/~aiken/moss/

	BST and AVL trees
	A tree printer
	Part 1
	Expected output for Part 1
	Part 2
	Example graphs for Part 2
	Code
	What to submit
	Rubrics
	Academic integrity

