
 1

San José State University
Department of Computer Engineering

CMPE 180A

Data Structures and Algorithms in C++
Fall 2020

Instructor: Ron Mak

Assignment #12
120 points

Assigned: Tuesday, November 10
Due: Tuesday, November 17 at 5:30 PM

URL: http://codecheck.it/files/20042106449v8h269ox2cydek52zp0kv5rm
Canvas: Assignment 12: Sorting algorithms

Sorting algorithms
This assignment will give you practice coding several important sorting algorithms, and
you will be able to compare their performances while sorting data of various sizes.

You will sort data elements in vectors with the selection sort, insertion short,
Shellsort, and quicksort algorithms, and sort data elements in a linked list with the
mergesort algorithm. There will be two versions of Shellsort, a “suboptimal” version that
uses the halving technique for the diminishing increment, and an “optimal” version that
uses a formula suggested by famous computer scientist Don Knuth. There will also be
two versions of quicksort, a “suboptimal” version that uses a bad pivoting strategy, and
an “optimal” version that uses a good pivoting strategy.

Class hierarchy
The UML (Unified Modeling Language) class diagram on the following page shows the
class hierarchy. You are provided the complete code for class SelectionSort as an

example, and you will code all versions of the other algorithms. You are also provided
much of the support code.

The code you will write are in these classes:

• InsertionSort

• ShellSortSuboptimal

• ShellSortOptimal

• QuickSorter

• QuickSortSuboptimal

• QuickSortOptimal

• LinkedList

• MergeSort

http://codecheck.it/files/20042106449v8h269ox2cydek52zp0kv5rm

 2

These sorting algorithms are all described in Chapter 10 of the Malik textbook. You can
also find many sorting tutorials on the Web.

Abstract class Sorter

Class Sorter is the base class of all the sorting algorithms. Its member function

sort() calls abstract member function run_sort_algorithm() which is defined in

the sorting subclasses that you will write. It contains the sort timers.

 3

Class Element

Your program will sort Element data, both in vectors and in linked lists. Each element

has a long value. Your program must also keep track of how many times each copy

constructor and destructor is called.

Abstract class VectorSorter

This is a subclass of Sorter and the base class for the vector sorting subclasses.

The vector sorting classes
The sorting classes SelectionSort, InsertionSort, ShellSortSuboptimal, and

ShellSortOptimal are subclasses of VectorSorter. Each defines the member

function run_sort_algorithm(). This member function is where you code each

sorting algorithm.

For class ShellSortSuboptimal, use the halving technique for the diminishing

increment. The value of the interval h for the first pass should be half the data size. For

each subsequent pass, half the increment, until the increment is just 1.

For class ShellSortOptimal, use Knuth’s formula 3i +1 for i = 0, 1, 2, 3, ... in reverse

for the diminishing increment. For example: ..., 121, 40, 13, 4, 1.

Abstract class QuickSorter

This a subclass of VectorSorter and the base class for the quicksort subclasses. It

does most of the work of the recursive quicksort algorithm. Its member function
choose_pivot() calls abstract member function choose_pivot_strategy()which

is defined by the two subclasses, QuickSortSuboptimal and QuickSortOptimal.

Class QuickSortSuboptimal

In subclass QuickSortSuboptimal, member function choose_pivot_strategy()

should always return the leftmost value of the subrange as the “bad” pivot value to use
to partition the subrange.

Class QuickSortOptimal

In subclass QuickSortOptimal, member function choose_pivot_strategy()

should always return the “median of three” value of the subrange as the “good” pivot
value. Look at the values at the left and right ends of the subrange and the value in the
middle and then choose the value that is between the other two.

Class ListSorter
This is a subclass of Sorter and the base class for the MergeSort subclass. It has a

pointer to a LinkedList of Node objects.

Class LinkedList
Class LinkedList manages a singly linked list of Node objects. Member function

split() splits the list into two sublists of the same size, plus or minus one. Member

function concatenate() appends another list to the end of the list.

 4

Class MergeSort

Unlike the other sorting subclasses, subclass MergeSort sorts a singly linked list.

Given a list to sort, it splits the list into two sublists. It recursively sorts the two sublists,
and then it merges the two sublists back together. Merging involves repeatedly adding
the head node of either sublist back to the main list. Which sublist donates its head
depends on which head node has the smaller value. When one sublist is exhausted,
concatenate the remaining nodes of the other sublist to the end of the main list.

When done properly, mergesort does not require any copying of data values. It does all
of its work by relinking the nodes to move them from one list to another.

The data generation classes
Abstract class DataGenerator is the base class of subclasses DataRandom,

DataSorted, DataReverseSorted, and DataAllZeros. Each subclass’s member

function generate_data() generates a vector of data that is random, already sorted,

sorted in reverse, and all zeros, respectively.

The main() in class SortTests

The main program tests each sorting algorithm for data sizes 10, 100, 1000, and 10,000.
It tests each algorithm against data that is random, already sorted, sorted in reverse, and
all zeros. It outputs a table similar to the one below.

Comparing the algorithms
To compare the performances of the sorting algorithms, keep track of these statistics for
each algorithm at each data size:

• The total number of copy constructor calls for the data elements being sorted.

• The total number of destructor calls of the data elements.

• The total number of times a data element is moved. Count one move whenever an
element moves from one part of the vector or linked list to another. Whenever two
elements are swapped, that counts as two moves.

• The total number of compares of two data elements. Count one compare whenever a
data element is compared against another element.

• The amount of elapsed time (in milliseconds) required to do the sort.

Collect these statistics only during sorting.

Sample output
The following pages show sample output. Your statistics may not be exactly as shown,
but your move and compare counts should be close.

 5

===============

Unsorted random

===============

N = 10

 ALGORITHM COPIES DESTRUCTS MOVES COMPARES MILLISECS

 Selection sort 17 17 16 45 0

 Insertion sort 9 9 18 19 0

 Shellsort suboptimal 22 22 11 26 0

 Shellsort optimal 15 15 12 18 0

 Quicksort suboptimal 24 24 48 40 0

 Quicksort optimal 26 26 52 69 0

 Mergesort 0 0 47 20 0

N = 100

 ALGORITHM COPIES DESTRUCTS MOVES COMPARES MILLISECS

 Selection sort 196 196 194 4,950 0

 Insertion sort 99 99 2,615 2,616 0

 Shellsort suboptimal 503 503 570 802 0

 Shellsort optimal 342 342 580 685 0

 Quicksort suboptimal 314 314 628 865 0

 Quicksort optimal 365 365 730 1,028 0

 Mergesort 0 0 840 543 0

N = 1,000

 ALGORITHM COPIES DESTRUCTS MOVES COMPARES MILLISECS

 Selection sort 1,989 1,989 1,980 499,500 2

 Insertion sort 999 999 252,734 252,734 3

 Shellsort suboptimal 8,006 8,006 10,963 14,633 0

 Shellsort optimal 5,457 5,457 11,622 13,313 0

 Quicksort suboptimal 3,833 3,833 7,666 12,070 0

 Quicksort optimal 4,425 4,425 8,850 14,277 0

 Mergesort 0 0 11,706 8,709 0

N = 10,000

 ALGORITHM COPIES DESTRUCTS MOVES COMPARES MILLISECS

 Selection sort 19,989 19,989 19,980 49,995,000 212

 Insertion sort 9,999 9,999 24,928,366 24,928,365 239

 Shellsort suboptimal 120,005 120,005 202,538 260,034 4

 Shellsort optimal 75,243 75,243 211,119 232,521 3

 Quicksort suboptimal 45,046 45,046 90,092 179,938 2

 Quicksort optimal 51,918 51,918 103,836 181,102 2

 Mergesort 0 0 150,477 120,480 2

 6

==============

Already sorted

==============

N = 10

 ALGORITHM COPIES DESTRUCTS MOVES COMPARES MILLISECS

 Selection sort 9 9 0 45 0

 Insertion sort 9 9 0 9 0

 Shellsort suboptimal 22 22 0 22 0

 Shellsort optimal 15 15 0 15 0

 Quicksort suboptimal 20 20 40 65 0

 Quicksort optimal 20 20 40 69 0

 Mergesort 0 0 42 15 0

N = 100

 ALGORITHM COPIES DESTRUCTS MOVES COMPARES MILLISECS

 Selection sort 99 99 0 4,950 0

 Insertion sort 99 99 0 99 0

 Shellsort suboptimal 503 503 0 503 0

 Shellsort optimal 342 342 0 342 0

 Quicksort suboptimal 200 200 400 5,150 0

 Quicksort optimal 200 200 400 980 0

 Mergesort 0 0 613 316 0

N = 1,000

 ALGORITHM COPIES DESTRUCTS MOVES COMPARES MILLISECS

 Selection sort 999 999 0 499,500 1

 Insertion sort 999 999 0 999 0

 Shellsort suboptimal 8,006 8,006 0 8,006 0

 Shellsort optimal 5,457 5,457 0 5,457 0

 Quicksort suboptimal 2,000 2,000 4,000 501,500 2

 Quicksort optimal 2,000 2,000 4,000 12,987 0

 Mergesort 0 0 7,929 4,932 0

N = 10,000

 ALGORITHM COPIES DESTRUCTS MOVES COMPARES MILLISECS

 Selection sort 9,999 9,999 0 49,995,000 206

 Insertion sort 9,999 9,999 0 9,999 0

 Shellsort suboptimal 120,005 120,005 0 120,005 1

 Shellsort optimal 75,243 75,243 0 75,243 0

 Quicksort suboptimal 20,000 20,000 40,000 50,015,000 202

 Quicksort optimal 20,000 20,000 40,000 163,631 1

 Mergesort 0 0 94,605 64,608 1

 7

==============

Reverse sorted

==============

N = 10

 ALGORITHM COPIES DESTRUCTS MOVES COMPARES MILLISECS

 Selection sort 14 14 10 45 0

 Insertion sort 9 9 54 45 0

 Shellsort suboptimal 22 22 24 27 0

 Shellsort optimal 15 15 24 21 0

 Quicksort suboptimal 20 20 40 65 0

 Quicksort optimal 27 27 54 69 0

 Mergesort 0 0 46 19 0

N = 100

 ALGORITHM COPIES DESTRUCTS MOVES COMPARES MILLISECS

 Selection sort 149 149 100 4,950 0

 Insertion sort 99 99 5,049 4,950 0

 Shellsort suboptimal 503 503 516 668 0

 Shellsort optimal 342 342 420 500 0

 Quicksort suboptimal 200 200 400 5,150 0

 Quicksort optimal 252 252 504 980 0

 Mergesort 0 0 653 356 0

N = 1,000

 ALGORITHM COPIES DESTRUCTS MOVES COMPARES MILLISECS

 Selection sort 1,499 1,499 1,000 499,500 2

 Insertion sort 999 999 500,499 499,500 4

 Shellsort suboptimal 8,006 8,006 9,072 11,716 0

 Shellsort optimal 5,457 5,457 6,855 8,550 0

 Quicksort suboptimal 2,000 2,000 4,000 501,500 1

 Quicksort optimal 2,502 2,502 5,004 12,987 0

 Mergesort 0 0 8,041 5,044 0

N = 10,000

 ALGORITHM COPIES DESTRUCTS MOVES COMPARES MILLISECS

 Selection sort 14,999 14,999 10,000 49,995,000 291

 Insertion sort 9,999 9,999 50,004,999 49,995,000 490

 Shellsort suboptimal 120,005 120,005 124,592 172,578 2

 Shellsort optimal 75,243 75,243 93,666 120,190 1

 Quicksort suboptimal 20,000 20,000 40,000 50,015,000 196

 Quicksort optimal 25,002 25,002 50,004 163,631 1

 Mergesort 0 0 99,005 69,008 1

 8

==========

All zeroes

==========

N = 10

 ALGORITHM COPIES DESTRUCTS MOVES COMPARES MILLISECS

 Selection sort 9 9 0 45 0

 Insertion sort 9 9 0 9 0

 Shellsort suboptimal 22 22 0 22 0

 Shellsort optimal 15 15 0 15 0

 Quicksort suboptimal 27 27 54 34 0

 Quicksort optimal 27 27 54 64 0

 Mergesort 0 0 42 15 0

N = 100

 ALGORITHM COPIES DESTRUCTS MOVES COMPARES MILLISECS

 Selection sort 99 99 0 4,950 0

 Insertion sort 99 99 0 99 0

 Shellsort suboptimal 503 503 0 503 0

 Shellsort optimal 342 342 0 342 0

 Quicksort suboptimal 419 419 838 638 0

 Quicksort optimal 419 419 838 938 0

 Mergesort 0 0 613 316 0

N = 1,000

 ALGORITHM COPIES DESTRUCTS MOVES COMPARES MILLISECS

 Selection sort 999 999 0 499,500 1

 Insertion sort 999 999 0 999 0

 Shellsort suboptimal 8,006 8,006 0 8,006 0

 Shellsort optimal 5,457 5,457 0 5,457 0

 Quicksort suboptimal 5,938 5,938 11,876 9,876 0

 Quicksort optimal 5,938 5,938 11,876 12,876 0

 Mergesort 0 0 7,929 4,932 0

N = 10,000

 ALGORITHM COPIES DESTRUCTS MOVES COMPARES MILLISECS

 Selection sort 9,999 9,999 0 49,995,000 203

 Insertion sort 9,999 9,999 0 9,999 0

 Shellsort suboptimal 120,005 120,005 0 120,005 1

 Shellsort optimal 75,243 75,243 0 75,243 0

 Quicksort suboptimal 74,613 74,613 149,226 129,226 1

 Quicksort optimal 74,613 74,613 149,226 159,226 2

 Mergesort 0 0 94,605 64,608 1

Done! Total 2,128 ms.

 9

Using code from books and the Web
Many books and Web articles will contain code for these sorting algorithms. If you use
code from these sources, you must cite your sources (book or URL) in your program
comments. Otherwise you can be caught by the software plagiarism checker.

Of course, you should understand what the code is doing, and not simply copy it.

Copying from another student’s program is still strictly forbidden.

What to submit
If you time out in CodeCheck, then run with only 10, 100, and 1000 data elements.
Include 10,000 data elements outside of CodeCheck and copy that output into a text file.

Submit the signed zip file from CodeCheck into Canvas: Assignment 12. Sorting
algorithms. Also submit the text file containing the output from larger numbers of data

elements.

Due to use of random numbers in this assignment, CodeCheck will not compare your
output.

Rubrics

Criteria Maximum points

Output (counts should be comparable to the sample output)

• Unsorted random

• Already sorted

• Reverse sorted

• All zeroes

40

• 10

• 10

• 10

• 10

Algorithm classes
• InsertionSort

• ShellSortSuboptimal

• ShellSortOptimal

• QuickSorter

• QuickSortSuboptimal

• QuickSortOptimal

• LinkedList

• MergeSort

80

• 10

• 10

• 10

• 10

• 10

• 10

• 10

• 10

Academic integrity

You may study together and discuss the assignments, but what you turn in must be
your individual work. Assignment submissions will be checked for plagiarism using
Moss (http://theory.stanford.edu/~aiken/moss/). Copying another student’s
program or sharing your program is a violation of academic integrity. Moss is
not fooled by renaming variables, reformatting source code, or re-ordering functions.

Violators of academic integrity will suffer severe sanctions, including academic
probation. Students who are on academic probation are not eligible for work as
instructional assistants in the university or for internships at local companies.

http://theory.stanford.edu/~aiken/moss/

	Sorting algorithms
	Class hierarchy
	Abstract class Sorter
	Class Element
	Abstract class VectorSorter
	The vector sorting classes
	Abstract class QuickSorter
	Class QuickSortSuboptimal
	Class QuickSortOptimal
	Class ListSorter
	Class LinkedList
	Class MergeSort
	The data generation classes
	The main() in class SortTests
	Comparing the algorithms
	Sample output
	Using code from books and the Web
	What to submit
	Rubrics
	Academic integrity

