
 1

San José State University
Department of Computer Engineering

CMPE 180-92

Data Structures and Algorithms in C++
Fall 2020

Instructor: Ron Mak

Assignment #10

Assigned: Tuesday, October 27
Due: Tuesday, November 3 at 5:30 PM

CodeCheck: http://codecheck.it/files/2004072437aw9khhpj93qqeg9gkiqobf5x5

Canvas: Assignment #10: STL Vector and List
Points: 200

STL Vector and List
This assignment will give you practice with the vector and the linked list containers from
the Standard Template Library (STL), subclasses, iterators, and exceptions. By running
similar tests on a sorted subclass of each container, you will compare their performance
with respect to execution time and the number of automatic calls to the constructor, copy
constructor, assignment operator, and destructor functions.

You will see whether a sorted vector or a sorted linked list container performs better for
each test, and you will discover how much overhead is caused by calls to the constructor
and destructor functions.

Test suite
Your program will run a suite of tests for the following operations on two types of
containers, a sorted vector of data nodes and a sorted list of data nodes. The former is a
subclass of the STL vector template class, and the latter is a subclass of the STL
(doubly-linked) list template class. Run each test several times with an increasing
number of data node objects: 100, 500, 1000; 5000, and 10,000 nodes.

• Prepends: Insert nodes one at a time at the beginning of the container.

• Appends: Add nodes one at a time to the end of the container.

• Gets: Access nodes at random positions in the container.

• Inserts: Insert nodes at random positions one at a time into the container while
maintaining sort order.

• Removes: Delete nodes at random positions one at a time from the container.

• Reverse: Reverse the order of the sorted nodes of the container.

http://codecheck.it/files/2004072437aw9khhpj93qqeg9gkiqobf5x5

 2

Online C++ references
Plan to consult online C++ references. Links you may find especially useful:

• http://www.cplusplus.com/reference/vector/vector/

• http://www.cplusplus.com/reference/list/list/

• http://www.cplusplus.com/reference/iterator/

Note that some of the member functions require iterator parameters.

The data nodes
Class Node represents the data nodes for the containers. Each node has a long

value data member. During each test, count how many times each constructor, copy

constructor, overloaded assignment operator, and destructor function is called for all
nodes. Therefore, class Node has these private static data members:

and these public static member functions:

Static data members and functions belong to their class, not to individual objects. A
static data member acts like a global variable. For example, use static data member
constructor_count to count how many times the Node constructor is called for all

Node objects. To call a public static member function from a non-member function, you

must use the scope resolution operator, such as Node::get_constructor_count()

and Node::reset(). The latter function resets all four counters to 0.

The sorted container classes
Container class SortedVector is a subclass of the STL template class

vector<Node> and container class SortedList is a subclass of the STL template

class list<Node>. Each subclass adds the constraint that the nodes must be sorted by

the Node objects’ value fields. Each container class implements the public member

functions prepend(), append(), insert(), delete(), and reverse() to perform

the operations described above. Each also implements helper member functions
check() and check_reversed() which verify that the container’s nodes are sorted

and reverse sorted, respectively.

If you override a parent class’s member function, you can still call it by using the scope
resolution operator. For example, inside the subclass member function
SortedVector::insert(), you can call vector<Node>::insert().

static long constructor_count;

static long copy_count;

static long assign_count;

static long destructor_count;

static long get_constructor_count();

static long get_copy_count();

static long get_assign_count();

static long get_destructor_count();

static void reset();

http://www.cplusplus.com/reference/vector/vector/
http://www.cplusplus.com/reference/list/list/
http://www.cplusplus.com/reference/iterator/

 3

Class SortedList overloads the subscript [] operator to enable accessing a node in

the linked list using a subscript. But unlike a vector node, you cannot directly access a
list node. You must “chase links” from either the head end or the tail end of the list to
arrive at the desired node. Take advantage of reverse iterators. If the node you want to
access is closer to the head of the list, use a regular (forward) iterator to reach it.
However, if the node you want to access is closer to the tail of the list, use a reverse
iterator to reach it. Unfortunately, STL member functions only work with a regular
iterator. To convert a reverse iterator that points to a node to a regular iterator that points
to the same node, see http://stackoverflow.com/questions/4407985/why-can-i-not-
convert-a-reverse-iterator-to-a-forward-iterator. (You can convert.) Tip: Implement a
helper function that returns a regular iterator that points to the desired indexed node.

How to reverse the order of a container
For this assignment, do not reverse the order of the nodes of a sorted container by
simply copying the contents (i.e., the value) of the nodes in place. Instead, we want to
exercise each container by removing and inserting nodes using iterators.

For example, suppose a sorted container contains the nodes A B C. Follow these steps:

• Set a regular (forward) iterator to point to the second node, B.

• Insert a copy of this node at the beginning of the container: B A B C

• Delete the node pointed to by the iterator: B A C

• Advance the iterator to point to the next node, C.

• Insert a copy of this node at the beginning of the container: C B A C

• Delete the node pointed to by the iterator: C B A

• Advance the iterator. It’s off the end of the container, so you’re done reversing.

The test suite
TestSuite.h and TestSuite.cpp implement the operation tests for both container

classes SortedVector and SortedList.

• Functions vector_appends() and list_appends() each initializes its

container by appending nodes with values in the order 0, 1, 2, ... size-1.

• Functions vector_prepends() and list_prepends() each initializes its

container by prepending nodes with values in the order size-1, size-2, ... 2, 1, 0.

• Functions vector_gets() and list_gets() each first initializes its container

by calling vector_appends() or list_appends(). Then each function

accesses GET_COUNT nodes from the container at random index positions. Each

function throws an exception if a wrong node was accessed.

• Functions vector_inserts() and list_inserts() each repeatedly inserts

nodes into its container with random values, up to the specified size. The
insertions must keep the containers sorted, and each function throws an
exception if the container becomes unsorted.

• Functions vector_removes() and list_removes() each repeatedly deletes

nodes at random index positions of a container until the container is empty.

• Functions vector_reverse() and list_reverse() reverse the sort order of

containers. Each function throws an exception if the container is not properly
reverse sorted.

http://stackoverflow.com/questions/4407985/why-can-i-not-convert-a-reverse-iterator-to-a-forward-iterator
http://stackoverflow.com/questions/4407985/why-can-i-not-convert-a-reverse-iterator-to-a-forward-iterator

 4

TestDriver.cpp contains main(), which calls function run_test_suite().

Function run_test_suite()calls run_test_functions() for each of the tests

described above, passing the name of the test and the two test functions, one for the
vector and one for the list.

Function run_test_functions() iterates over the container sizes. For each size, it

times the execution of the vector function and of the list function that were passed to it.
As shown in the sample output below for each test, run_test_functions() records

and prints the elapsed time in milliseconds and the counts of calls to the Node

constructor, copy constructor, destructor, and assignment functions.

Note 1: You must compile this project with: -std=c++0x

Note 2: For this assignment, do not reserve space for the vector. We want to see how
many constructor and destructor calls result from C++ expanding a vector’s size. (As a
test, you can reserve space for the vector and see what effect it has.)

Submission into Canvas
Because of random numbers, the different timings, and possibly different counts,
CodeCheck will not compare your output.

When you’re satisfied with your program in CodeCheck, click the “Download” link at the
very bottom of the Report screen to download a signed zip file of your solution. Submit
this signed zip file into Canvas. You can submit as many times as you want until the
deadline, and the number of submissions will not affect your score. Only your last
submission will be graded.

Submit into Canvas: Assignment #10: STL Vector and List

Note: You must submit the signed zip file that you download from CodeCheck, or your
submission will not be graded. Do not rename the zip file.

Sample output
In the sample output below, Size is the number of Node objects, Time is the elapsed

time in milliseconds required to execute the test for that size, Creates is the number of

calls to the Node constructor, Copies is the number of calls to the Node copy

constructor, Assigns is the number of calls to the overloaded Node assignment

operator, and Destroys is the number of calls to the Node destructor.

Be sure that you understand and can explain all the vector and list counts! If you
reserved space for the vector, what affect would that have on its counts? For each size
of the test, how much space should you reserve?

 5

=======

Prepend

=======

 |--------------------Vector-------------------| |---------------------List--------------------|

 Size Time Creates Copies Assigns Destroys Time Creates Copies Assigns Destroys

 100 0 ms 100 227 4,823 227 0 ms 100 100 0 100

 500 0 ms 500 1,011 124,239 1,011 0 ms 500 500 0 500

 1,000 2 ms 1,000 2,023 498,477 2,023 0 ms 1,000 1,000 0 1,000

 5,000 53 ms 5,000 13,191 12,489,309 13,191 0 ms 5,000 5,000 0 5,000

10,000 187 ms 10,000 26,383 49,978,617 26,383 1 ms 10,000 10,000 0 10,000

======

Append

======

 |--------------------Vector-------------------| |---------------------List--------------------|

 Size Time Creates Copies Assigns Destroys Time Creates Copies Assigns Destroys

 100 0 ms 100 227 0 227 0 ms 100 100 0 100

 500 0 ms 500 1,011 0 1,011 0 ms 500 500 0 500

 1,000 0 ms 1,000 2,023 0 2,023 0 ms 1,000 1,000 0 1,000

 5,000 0 ms 5,000 13,191 0 13,191 0 ms 5,000 5,000 0 5,000

10,000 0 ms 10,000 26,383 0 26,383 1 ms 10,000 10,000 0 10,000

===

Get

===

 |--------------------Vector-------------------| |---------------------List--------------------|

 Size Time Creates Copies Assigns Destroys Time Creates Copies Assigns Destroys

 100 0 ms 0 0 0 0 1 ms 0 0 0 0

 500 0 ms 0 0 0 0 3 ms 0 0 0 0

 1,000 0 ms 0 0 0 0 8 ms 0 0 0 0

 5,000 0 ms 0 0 0 0 36 ms 0 0 0 0

10,000 0 ms 0 0 0 0 80 ms 0 0 0 0

======

Remove

======

 |--------------------Vector-------------------| |---------------------List--------------------|

 Size Time Creates Copies Assigns Destroys Time Creates Copies Assigns Destroys

 100 0 ms 0 0 2,487 100 0 ms 0 0 0 100

 500 0 ms 0 0 59,412 500 0 ms 0 0 0 500

 1,000 1 ms 0 0 251,410 1,000 0 ms 0 0 0 1,000

 5,000 24 ms 0 0 6,191,762 5,000 11 ms 0 0 0 5,000

10,000 96 ms 0 0 25,067,751 10,000 43 ms 0 0 0 10,000

======

Insert

======

 |--------------------Vector-------------------| |---------------------List--------------------|

 Size Time Creates Copies Assigns Destroys Time Creates Copies Assigns Destroys

 100 0 ms 100 227 2,467 227 0 ms 100 100 0 100

 500 1 ms 500 1,011 61,813 1,011 1 ms 500 500 0 500

 1,000 5 ms 1,000 2,023 258,196 2,023 7 ms 1,000 1,000 0 1,000

 5,000 145 ms 5,000 13,191 6,176,163 13,191 206 ms 5,000 5,000 0 5,000

10,000 587 ms 10,000 26,383 25,086,938 26,383 788 ms 10,000 10,000 0 10,000

=======

Reverse

=======

 |--------------------Vector-------------------| |---------------------List--------------------|

 Size Time Creates Copies Assigns Destroys Time Creates Copies Assigns Destroys

 100 0 ms 0 99 14,751 99 0 ms 0 99 0 99

 500 1 ms 0 499 373,751 499 0 ms 0 499 0 499

 1,000 5 ms 0 999 1,497,501 999 0 ms 0 999 0 999

 5,000 140 ms 0 4,999 37,487,501 4,999 2 ms 0 4,999 0 4,999

10,000 523 ms 0 9,999 149,975,001 9,999 4 ms 0 9,999 0 9,999

Done! Total time: 2.99369 seconds

 6

Rubric
Your program will be graded according to these criteria:

Criteria Max points

Good output

• Timings

• Counts

20

• 10

• 10

Container classes

• Class Node with call counting.

• SortedVector::prepend()

• SortedVector::append()

• SortedVector::remove()

• SortedVector::insert()

• SortedVector::reverse() using iterator

• SortedList::prepend()

• SortedList::append()

• SortedList::remove()

• SortedList::insert()

• SortedList::reverse() using iterator

• SortedList::operator[]()

120

• 10

• 10

• 10

• 10

• 10

• 10

• 10

• 10

• 10

• 10

• 10

• 10

Test suite

• vector_prepends() and list_prepends()

• vector_appends() and list_appends()

• vector_gets() and list_gets()

• vector_removes() and list_removes()

• vector_inserts() and list_inserts()

• vector_reverse() and list_reverse()

60

• 10

• 10

• 10

• 10

• 10

• 10

Academic integrity

You may study together and discuss the assignments, but what you turn in must be
your individual work. Assignment submissions will be checked for plagiarism using
Moss (http://theory.stanford.edu/~aiken/moss/). Copying another student’s
program or sharing your program is a violation of academic integrity. Moss is
not fooled by renaming variables, reformatting source code, or re-ordering functions.

Violators of academic integrity will suffer severe sanctions, including academic
probation. Students who are on academic probation are not eligible for work as
instructional assistants in the university or for internships at local companies.

http://theory.stanford.edu/~aiken/moss/

	STL Vector and List
	Test suite
	Online C++ references
	The data nodes
	The sorted container classes
	How to reverse the order of a container
	The test suite
	Submission into Canvas
	Sample output
	Rubric
	Academic integrity

