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San José State University 
Department of Computer Engineering 

 

CMPE 152 

Compiler Design 
Section 1 

Spring 2021 
Instructor: Ron Mak 

Assignment #2 

Assigned: Thursday, February 4 
Due: Thursday, February 11 at 2:30 PM 

 Team assignment, 100 points max 

Pascal scanner  
The purpose of this assignment is to give you practice writing a scanner for Pascal. 

Start with the Scanner and Token classes in SimpleCpp.zip that we went over in class. 

Modify the classes to handle the following Pascal reserved word tokens: 

 
Handle the following Pascal special symbol tokens: 

 
Also recognize these tokens: 

 
You can make any modifications that you deem necessary to the other classes. For a 
more complete list of Pascal tokens, see the syntax diagrams at 
http://primepuzzle.com/tp2/syntax-diagrams.html  

Comments 
Your scanner should treat each comment as it would treat a blank – comments should 
be ignored. Pascal comments are enclosed in curly braces { and }. 

  

PROGRAM BEGIN END REPEAT UNTIL WRITE WRITELN DIV MOD  

AND OR NOT CONST TYPE VAR PROCEDURE FUNCTION 

WHILE DO FOR TO DOWNTO IF THEN ELSE CASE OF 

.  ,  :  :=  ;   +  -  *  /  (   )   

=  <>  <  <=  >  >=  ..  '  [  ]  ^ 

IDENTIFIER INTEGER REAL CHARACTER STRING END_OF_FILE ERROR 

http://www.cs.sjsu.edu/~mak/CMPE152/code/SimpleCpp.zip
http://primepuzzle.com/tp2/syntax-diagrams.html
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Strings and character literals 
A literal Pascal string is enclosed in single quotes. If a single quote character is part of a 
string, it is represented by two consecutive single quotes. For example, 'It''s' 

contains the characters It's. It is possible to have the empty string: '' 

A literal Pascal character is simply a string with only one character. For example: 'a' 

Test files 
Test your code on test input file Newton.txt: 

  PROGRAM Newton; 

  

BEGIN 

    writeln(' n   Square root'); 

    writeln('----------------'); 

 

    FOR n := 1 TO 20 DO BEGIN 

        write(n:2); 

 

        root := n; 

        prev := root; 

        diff := 99999; 

 

        WHILE diff > 0.000001 DO BEGIN 

            root := (n/root + root)/2; 

            diff := prev - root; 

            prev := root; 

        END; 

 

        writeln(root:14:6) 

    END 

END. 

http://www.cs.sjsu.edu/~mak/CMPE152/assignments/2/Newton.txt
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Test input file ScannerTest.txt will give your scanner and token classes a good 

workout: 

 

Expected output 
Your output for input file ScannerTest.txt should be similar to the following: 

  

{This is a comment.} 

 

{This is a comment 

 that spans several 

 source lines.} 

 

Two{comments in}{a row} here 

 

{Word tokens} 

Hello world 

begin BEGIN Begin BeGiN begins 

 

{String tokens} 

'Hello, world.' 

'It''s Friday!' 

'' 

'A' 'x' '''' 

' '' '' '   '''''' 

'This string 

spans 

source lines.' 

 

{Special symbol tokens} 

+ - * / := . , ; : = <> < <= >= > ( ) [ ] { } } ^ .. 

+-:=<>=<==..... 

 

{Number tokens} 

0 1 20 00000000000000000032  31415926 

3.1415926  3.1415926535897932384626433 .14 

 

{Bad tokens} 

3.14.15926 

What? 

'String ''not'' closed 

Tokens: 

 

    IDENTIFIER : Two 

    IDENTIFIER : here 

    IDENTIFIER : Hello 

    IDENTIFIER : world 

         BEGIN : begin 

         BEGIN : BEGIN 

         BEGIN : Begin 

         BEGIN : BeGiN 

    IDENTIFIER : begins 

http://www.cs.sjsu.edu/~mak/CMPE152/assignments/2/ScannerTest.txt
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        STRING : 'Hello, world.' 

        STRING : 'It's Friday!' 

        STRING : '' 

     CHARACTER : 'A' 

     CHARACTER : 'x' 

     CHARACTER : ''' 

        STRING : ' ' ' ' 

        STRING : '''' 

        STRING : 'This string 

spans 

source lines.' 

          PLUS : + 

         MINUS : - 

          STAR : * 

         SLASH : / 

  COLON_EQUALS : := 

        PERIOD : . 

         COMMA : , 

     SEMICOLON : ; 

         COLON : : 

        EQUALS : = 

    NOT_EQUALS : <> 

     LESS_THAN : < 

   LESS_EQUALS : <= 

GREATER_EQUALS : >= 

  GREATER_THAN : > 

        LPAREN : ( 

        RPAREN : ) 

      LBRACKET : [ 

      RBRACKET : ] 

TOKEN ERROR at line 24: Invalid token at '}' 

         ERROR : } 

         CARAT : ^ 

       DOT_DOT : .. 

          PLUS : + 

         MINUS : - 

  COLON_EQUALS : := 

    NOT_EQUALS : <> 

        EQUALS : = 

   LESS_EQUALS : <= 

        EQUALS : = 

       DOT_DOT : .. 

       DOT_DOT : .. 

        PERIOD : . 

       INTEGER : 0 

       INTEGER : 1 

       INTEGER : 20 

       INTEGER : 00000000000000000032 

       INTEGER : 31415926 

          REAL : 3.1415926 

          REAL : 3.1415926535897932384626433 

        PERIOD : . 

       INTEGER : 14 

TOKEN ERROR at line 32: Invalid number at '3.14.15926' 

         ERROR : 3.14.15926 

    IDENTIFIER : What 

TOKEN ERROR at line 33: Invalid token at '?' 

         ERROR : ? 

TOKEN ERROR at line 34: String not closed at ''String 

'not' closed' 

        STRING : 'String 'not' closed 
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What to submit to Canvas 

• A new version of SimpleCpp.zip that includes your modified Scanner and 

Token classes.  

• Text files of output from running your scanner on input files Newton.txt and 

ScannerTest.txt. 

Submit to Assignment #2: Pascal Scanner  

Rubric 
Your submission will be graded according to these criteria: 

Criteria Maximum points 

Reserved words handled properly. 30 

Special symbols handled properly. 30 

Token errors handled properly. 30 

Good output format. 10 

 

 

There should be only one submission per team. 
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