
 1

San José State University
Department of Computer Engineering

CMPE 152

Compiler Design
Section 1

Spring 2021
Instructor: Ron Mak

Assignment #2

Assigned: Thursday, February 4
Due: Thursday, February 11 at 2:30 PM

 Team assignment, 100 points max

Pascal scanner
The purpose of this assignment is to give you practice writing a scanner for Pascal.

Start with the Scanner and Token classes in SimpleCpp.zip that we went over in class.

Modify the classes to handle the following Pascal reserved word tokens:

Handle the following Pascal special symbol tokens:

Also recognize these tokens:

You can make any modifications that you deem necessary to the other classes. For a
more complete list of Pascal tokens, see the syntax diagrams at
http://primepuzzle.com/tp2/syntax-diagrams.html

Comments
Your scanner should treat each comment as it would treat a blank – comments should
be ignored. Pascal comments are enclosed in curly braces { and }.

PROGRAM BEGIN END REPEAT UNTIL WRITE WRITELN DIV MOD

AND OR NOT CONST TYPE VAR PROCEDURE FUNCTION

WHILE DO FOR TO DOWNTO IF THEN ELSE CASE OF

. , : := ; + - * / ()

= <> < <= > >= .. ' [] ^

IDENTIFIER INTEGER REAL CHARACTER STRING END_OF_FILE ERROR

http://www.cs.sjsu.edu/~mak/CMPE152/code/SimpleCpp.zip
http://primepuzzle.com/tp2/syntax-diagrams.html

 2

Strings and character literals
A literal Pascal string is enclosed in single quotes. If a single quote character is part of a
string, it is represented by two consecutive single quotes. For example, 'It''s'

contains the characters It's. It is possible to have the empty string: ''

A literal Pascal character is simply a string with only one character. For example: 'a'

Test files
Test your code on test input file Newton.txt:

 PROGRAM Newton;

BEGIN

 writeln(' n Square root');

 writeln('----------------');

 FOR n := 1 TO 20 DO BEGIN

 write(n:2);

 root := n;

 prev := root;

 diff := 99999;

 WHILE diff > 0.000001 DO BEGIN

 root := (n/root + root)/2;

 diff := prev - root;

 prev := root;

 END;

 writeln(root:14:6)

 END

END.

http://www.cs.sjsu.edu/~mak/CMPE152/assignments/2/Newton.txt

 3

Test input file ScannerTest.txt will give your scanner and token classes a good

workout:

Expected output
Your output for input file ScannerTest.txt should be similar to the following:

{This is a comment.}

{This is a comment

 that spans several

 source lines.}

Two{comments in}{a row} here

{Word tokens}

Hello world

begin BEGIN Begin BeGiN begins

{String tokens}

'Hello, world.'

'It''s Friday!'

''

'A' 'x' ''''

' '' '' ' ''''''

'This string

spans

source lines.'

{Special symbol tokens}

+ - * / := . , ; : = <> < <= >= > () [] { } } ^ ..

+-:=<>=<==.....

{Number tokens}

0 1 20 00000000000000000032 31415926

3.1415926 3.1415926535897932384626433 .14

{Bad tokens}

3.14.15926

What?

'String ''not'' closed

Tokens:

 IDENTIFIER : Two

 IDENTIFIER : here

 IDENTIFIER : Hello

 IDENTIFIER : world

 BEGIN : begin

 BEGIN : BEGIN

 BEGIN : Begin

 BEGIN : BeGiN

 IDENTIFIER : begins

http://www.cs.sjsu.edu/~mak/CMPE152/assignments/2/ScannerTest.txt

 4

 STRING : 'Hello, world.'

 STRING : 'It's Friday!'

 STRING : ''

 CHARACTER : 'A'

 CHARACTER : 'x'

 CHARACTER : '''

 STRING : ' ' ' '

 STRING : ''''

 STRING : 'This string

spans

source lines.'

 PLUS : +

 MINUS : -

 STAR : *

 SLASH : /

 COLON_EQUALS : :=

 PERIOD : .

 COMMA : ,

 SEMICOLON : ;

 COLON : :

 EQUALS : =

 NOT_EQUALS : <>

 LESS_THAN : <

 LESS_EQUALS : <=

GREATER_EQUALS : >=

 GREATER_THAN : >

 LPAREN : (

 RPAREN :)

 LBRACKET : [

 RBRACKET :]

TOKEN ERROR at line 24: Invalid token at '}'

 ERROR : }

 CARAT : ^

 DOT_DOT : ..

 PLUS : +

 MINUS : -

 COLON_EQUALS : :=

 NOT_EQUALS : <>

 EQUALS : =

 LESS_EQUALS : <=

 EQUALS : =

 DOT_DOT : ..

 DOT_DOT : ..

 PERIOD : .

 INTEGER : 0

 INTEGER : 1

 INTEGER : 20

 INTEGER : 00000000000000000032

 INTEGER : 31415926

 REAL : 3.1415926

 REAL : 3.1415926535897932384626433

 PERIOD : .

 INTEGER : 14

TOKEN ERROR at line 32: Invalid number at '3.14.15926'

 ERROR : 3.14.15926

 IDENTIFIER : What

TOKEN ERROR at line 33: Invalid token at '?'

 ERROR : ?

TOKEN ERROR at line 34: String not closed at ''String

'not' closed'

 STRING : 'String 'not' closed

 5

What to submit to Canvas

• A new version of SimpleCpp.zip that includes your modified Scanner and

Token classes.

• Text files of output from running your scanner on input files Newton.txt and

ScannerTest.txt.

Submit to Assignment #2: Pascal Scanner

Rubric
Your submission will be graded according to these criteria:

Criteria Maximum points

Reserved words handled properly. 30

Special symbols handled properly. 30

Token errors handled properly. 30

Good output format. 10

There should be only one submission per team.

	Pascal scanner
	Comments
	Strings and character literals
	Test files
	Expected output
	What to submit to Canvas
	Rubric

