

1

San José State University
Department of Computer Engineering

CMPE 142

Operating Systems
Section 1

Spring 2021
Instructor: Ron Mak

Assignment #8

Assigned: Friday, April 16
Due: Friday, April 23 at 11:59 PM

 Team assignment, 100 points

POSIX file system functions
In this assignment, your team will call POSIX file and directory functions and run the
fswatch utility program as a child process to monitor file system operations.

POSIX functions
Consider the following sequence of file system commands that one could enter on the
command line of a Bash terminal window:

Each of these file system operations can be performed in a C or C++ program using
POSIX file and directory functions. See https://www.mkompf.com/cplus/posixlist.html.

mkdir subdir1

mkdir subdir2

cd subdir1

echo "Hello, world!" >> file1.txt (do this 5 times to write 5 lines)
cp file1.txt file2.txt

mv file2.txt ../subdir2/file2.txt

cd ../subdir2

ln file2.txt file3.txt

ln -s file2.txt file2s.txt

cd ../subdir1

rm file1.txt

cd ..

rmdir subdir1

cd subdir2

chmod a+rw file2.txt

cat file2s.txt

https://www.mkompf.com/cplus/posixlist.html

2

Some examples:

Bash command POSIX function

mkdir mkdir()

cd chdir()

ln link()

rm unlink()

echo "Hello, world" > file.txt open() the file

write to the file

close() the file

The fswatch utility program
The fswatch utility program monitors the file system and writes messages to its

standard output that indicate what operations the file system performed. To run on the
command line and monitor a given directory, e.g., mydirectory:

• -x to print file manager events

• -t to include timestamps

• -r to recurse to monitor subdirectories

The specific messages that fswatch writes for each command depend on the operating

system. Some commands (such as cd) do not cause any file system operations, and so

there won’t be any output from fswatch.

Install fswatch
• Ubuntu: https://zoomadmin.com/HowToInstall/UbuntuPackage/fswatch

• Mac OS: http://support.moonpoint.com/os/os-x/homebrew/fswatch.php

Your program operation
As you’ve done in past assignments, your program should create a pipe, fork a child
process, and read from the pipe what the child process writes to the pipe.

The child process should run fswatch with the above options to monitor the current

directory; i.e., the child process should run

To run fswatch, the child process must call one of the POSIX exec functions

execl(), execle(), execlp(), execv(), or execvp().

fswatch -xtr mydirectory

fswatch -xtr .

https://zoomadmin.com/HowToInstall/UbuntuPackage/fswatch
https://zoomadmin.com/HowToInstall/UbuntuPackage/fswatch
http://support.moonpoint.com/os/os-x/homebrew/fswatch.php
http://support.moonpoint.com/os/os-x/homebrew/fswatch.php

3

fswatch writes to its standard output. To programmatically redirect its standard output

to the write end of the pipe, the child process needs to call either the dup() or dup2()

function before starting fswatch.

After forking the child process, the parent process should then call POSIX functions to
execute the series of file operations equivalent to the Bash commands shown above.
After each operation, the parent should read the pipe for output from fswatch that

resulted from the file operation.

fswatch can lag a file operation by a second, and not every file operation causes it to

produce output. Therefore, the parent process should do a nonblocking read of the pipe.
If the pipe is empty, it should wait a second and try another read. If after a few tries with
nothing read, it should assume fswatch didn’t write anything and go on to the next file

operation.

To organize the output and make it more intelligible, the parent process should print the
equivalent Bash command, call the POSIX function(s), and then print the fswatch

output that it read from the pipe.

Example output from the parent process (different on other operating systems):

When the parent process is done making the sequence of file system calls, it should
terminate the child process, which will also terminate fswatch, and print “Done!”,

Tips
After the parent process forks the child process, the parent should sleep for a second to
give the child process a chance to start fswatch.

The parent process should use a large (8K?) buffer to read the pipe. The fswatch

command can generate many lines of output in response to certain file operations.

Do not use the system() function. Call the POSIX file functions.

----- mkdir subdir1

Fri Apr 16 01:02:19 2021 /Users/rmak/Asgn08-FS-Monitor/subdir1 Created IsDir

----- mkdir subdir2

Fri Apr 16 01:02:20 2021 /Users/rmak/Asgn08-FS-Monitor/subdir2 Created IsDir

----- cd subdir1

----- open file1.txt, append, close

Fri Apr 16 01:02:25 2021 /Users/rmak/Asgn08-FS-Monitor/subdir1/file1.txt Created Updated IsFile

----- cp file1.txt file2.txt

Fri Apr 16 01:02:26 2021 /Users/rmak/Asgn08-FS-Monitor/subdir1/file2.txt Created Updated IsFile

etc.

4

What to submit
Submit the following to Canvas, Assignment #8: POSIX File System Functions.

• Source files (either C or C++) of your program.

• A text file of your program’s output.

Rubric
Your submission will be graded according to these criteria:

Criteria Max points

Program structure

• Parent and child processes with pipe.

• Parent process does nonblocking reads on the pipe.

• Child process redirects standard output to the pipe.

• Child process runs fswatch with the proper options.

File operations

• POSIX file and directory functions called properly.

• fswatch output printed by the parent process.

50

• 10

• 10

• 10

• 20

50

• 35

• 15

	POSIX file system functions
	POSIX functions
	The fswatch utility program
	Install fswatch
	Your program operation
	Tips
	What to submit
	Rubric

