

1

San José State University
Department of Computer Engineering

CMPE 142

Operating Systems
Section 1

Spring 2021
Instructor: Ron Mak

Assignment #5

Assigned: Friday, March 5
Due: Friday, March 12 at 11:30 AM

 Team assignment, 105 points max

Memory allocation algorithms
In this assignment, your team will simulate three popular memory allocation algorithms,
first fit, next fit, and best fit. You will also have another opportunity to practice
multiprocessing and named pipes. You may write your programs in either C or C++.

Run the simulation at least once for each of the three algorithms.

Memory manager and requester processes
Create a single memory manager process that keeps track of around 3000 memory
blocks. Also create several requester processes that each asks the memory manager
to allocate and deallocate memory segments of various sizes. Give each requester
process a single-character name, such as A, B, C, etc. Send each request to the
memory manager via a named pipe (FIFO).

Each allocation request should consist of:

• A unique request id. If you named a requester process A, then you can use
request ids like A0001, A0002, A0003, etc.

• The name of the requester process (not necessary if it’s the first character of the
request id).

• The requested block size.

For each request block size, randomly choose one of the following prime number sizes:
3, 5, 7, 11, 13, 17, 19, 23, or 29. (Put the sizes in a static array and then randomly
choose one of the array elements each time.)

After making each request, the requester process must wait for the memory manager to
fulfill the request. (Wait on a named semaphore dedicated to that process.)

2

Each requester process needs to keep track of the requests that it made, so that it can
later make a deallocation request that it randomly chooses from among its remaining
previous allocations. Each deallocation request should consist of:

• The request id of the previous allocation.

• The name of the requester process (if necessary).

The memory manager process can immediately grant deallocation requests, so there is
no need for the requester process to wait after each deallocation request.

Each time through a loop, each requester process should make either an allocation or a
deallocation request. About 60% of the times, it should be an allocation request. The rest
of the times, it should be a randomly chosen deallocation request, if there are any
previous allocations not yet deallocated. (Generate a random number 0 – 9. Make an
allocation request if the generated number is 0 – 5, otherwise make a deallocation
request.)

So that everything doesn’t happen too quickly to observe, introduce a small delay (a
short random sleep period) between requests.

The memory manager process must keep track of all the allocated and free segments in
a memory map. Whenever it reads an allocation request from the named pipe, it can
either immediately fulfill the request immediately using the allocation algorithm, or it must
put the request on hold until a sufficiently large segment is freed from a later deallocation
request. Of course, allocations in the memory map must not overlap.

When the memory manager receives a deallocation request, it should immediately
service the request. Adjacent free segments should immediately merge into one larger
free segment.

After granting a deallocation request, the memory manager should look at the allocation
requests it has on hold to see if it can fulfill any of them. Allocation requests on hold
should have priority over new incoming allocation requests.

After the memory manager process fulfills an allocation request, it must signal the
requester process that made the request, since the requester process was waiting for its
request to be fulfilled.

Since there will be more allocation requests than deallocation requests, the memory will
eventually “fill up” and the memory manager can no longer fulfill any allocation requests
and all the requester processes are hung waiting for their last allocation request to be
fulfilled. At that point, the simulation ends.

3

Live memory map display
To allow you to monitor the progress of the memory manager process, the process
should maintain a live memory map display that shows which requester process owns
each memory block. For example:

Even though your “memory” is one dimensional, you would break it up into convenient
rows for the display. We see in this display that there are allocations for requester
processes named A, B, C, D, E, and F. The memory manager process should update
the map dynamically after each fulfilled allocation request and deallocation request.

The ncurses package
To create and maintain the text-based memory map display, use the ncurses package.

This package may already be installed in your Ubuntu or MacOS platform. To find out,
enter the following command in a terminal window (can you decipher this bash
command?):

The command’s output, if any, should tell where are your libncurses library files:

find / -name libncurses\.* 2> /dev/null

/usr/local/Cellar/ncurses/6.2/lib/libncurses.6.dylib

/usr/local/Cellar/ncurses/6.2/lib/libncurses.dylib

/usr/local/Cellar/ncurses/6.2/lib/libncurses.a

4

The output should come out quickly to show you the location of the library files. If the
command appears to hang or terminates with no output, you don’t already have
ncurses installed.

To install the latest version of ncurses in Ubuntu:

To install the latest version of ncurses in MacOS:

To compile and run the example DotsAndStars.c program:

Performance statistics
During the simulation of each memory allocation algorithm, keep track of performance
statistics:

• How many allocation requests in total were fulfilled?

• How many allocation requests fulfilled immediately, and how many were first put
on hold?

• On average, how many requests (allocation or deallocation) were serviced before
a request on hold could be fulfilled?

• At the end of each simulation, what percentage of the memory blocks were filled?

After you’ve performed all the simulations, what conclusions can you make about the
relative performances of the algorithms?

You may want to run the simulations multiple times for each algorithm (with a different
random number seed each time) and compute averages. If it’s necessary to enhance the
differences among the algorithms, you can adjust any of the parameters (more prime
sizes, different percentage of allocation requests, etc.), and note that in your program
comments.

What to submit
Submit the following to Canvas, Assignment #5: Memory Allocation Algorithms.

• Source files (either C or C++) of your memory manager and requester programs.

• A screen shot of the memory map at the conclusion of each simulation. Label
each screen shot with the name of the algorithm (first fit, next fit, or best fit).

sudo apt-get install libncurses5-dev libncursesw5-dev

brew install ncurses

cc -o das DotsAndStars.c -lncurses

./das

5

Rubric
 Your submission will be graded according to these criteria:

Criteria Max points

Memory manager process

• Management of allocation requests

• Management of deallocation requests

• Use of the named pipe and named semaphores

• First fit algorithm
o screen shot
o simulation statistics

• Next fit algorithm
o screen shot
o simulation statistics

• Best fit algorithm
o screen shot
o simulation statistics

Requester process

• Allocation requests

• Deallocation requests

• Use of the named pipe and named semaphores

75

• 10

• 10

• 10

o 5
o 10

o 5
o 10

o 5
o 10

30

• 10

• 10

• 10

	Memory allocation algorithms
	Memory manager and requester processes
	Live memory map display
	The ncurses package
	Performance statistics
	What to submit
	Rubric

