

1

San José State University
Department of Computer Engineering

CMPE 142

Operating Systems
Section 1

Spring 2021
Instructor: Ron Mak

Assignment #4

Assigned: Friday, February 26
Due: Friday, March 5 at 11:30 AM

 Team assignment, 100 points max

Interprocess communication
This assignment will give your team practice using a named pipe (FIFO) and shared
memory to perform interprocess communication (IPC). You may write your programs in
either C or C++.

Part 1: IPC using named pipes
Write two programs, PipeProducer and PipeConsumer. Run the producer program

multiple times and the consumer program multiple times in separate terminal windows,
all simultaneously.

The first producer process should create a named pipe (FIFO) and write data values
101, 102, 103, etc. to it. The second producer process should write data values 201,
202, 203, etc. to the pipe. Other producer processes should write similar data values.
Each process should also write the data values to its standard output.

Each consumer process should read the data values from the pipe and write each value
to its standard output.

The producer program should take two command-line parameters, an id and the number
of data values to write to the pipe. The producer process with id 1 should first remove
the named pipe (unlink) in case it’s left over from a previous run and then create a

new pipe (mkfifo). The other producer processes should simply write to the pipe that

process 1 created. After each producer process has written all its data values, it should
write a done message to its standard output and then terminate normally.

For example, you can start three producer processes with these commands, each in a
separate terminal window:

./producer 1 50

./producer 2 60

./producer 3 70

2

The consumer program should take an id as its single command-line parameter. After all
the producer processes have completed writing and there are no more data values in the
pipe, each consumer process should write a done message to its standard output and
then terminate normally.

For example, you can start two consumer processes with these commands, each in a
separate terminal window:

Note that the writers will block opening the named pipe until a reader has opened it.

Part 2: IPC using shared memory
Write two programs, ShmemProducer and ShmemConsumer. You will run the producer

program multiple times and the consumer program multiple times in separate terminal
windows, all simultaneously. Like the programs in Part 1, the producer program should
take an id and the number of data values from the command line, and the consumer
program should take an id from the command line.

The producer process with id 1 should create a named shared memory segment in
which a circular buffer of a given size, say 5, will reside. Each producer process should
write data values as in Part 1 into the buffer.

Each consumer process should read from the buffer in shared memory.

You will need named semaphores to synchronize the actions of the producers and
consumers. Producer process 1 should also create these. Be sure to remove the
semaphores left over from previous runs. You might also need one or more mutexes.
One way to share a mutex among multiple processes is to recall that a mutex is a binary
semaphore.

What to submit
Submit the following to Canvas, Assignment #4: Interprocess Communication.

• Source files (either C or C++) of your programs PipeProducer,

PipeConsumer, ShmemProducer, and ShmemConsumer.

• For Part 1, a screenshot of three producers running (in three separate terminal
windows) and two consumers running (in two separate terminal windows). Make
a similar screenshot for Part 2.

./consumer 1

./consumer 2

3

Rubric
 Your submission will be graded according to these criteria:

Criteria Max points

Part 1

• Source file(s) of program PipeProducer

• Source file(s) of program PipeConsumer

• Screen shot of terminal windows running
the producers and consumers.

Part 2

• Source file(s) of program ShmemProducer

• Source file(s) of program ShmemConsumer

• Screen shot of terminal windows running
the producers and consumers.

40

• 15

• 15

• 10

60

• 25

• 25

• 10

	Interprocess communication
	Part 1: IPC using named pipes
	Part 2: IPC using shared memory
	What to submit
	Rubric

