
No Name3
Kanvas with a K
CMPE 131
Assignment 8: CODE REVIEW

Reading Plan:

This code review will describe the functionality of the Kanvas application’s task
creation; a use case involving a user creating a task will also be described.
Each user is capable of creating a task by navigating to the task creator page from the User
dashboard. The purpose of tasks is to remind users individuals or groups of work that
needs to be done, and impending deadlines. This is especially useful for group projects
where many members need to be managed by a team leader, and when the project is
convoluted and needs many tasks to be finished.

Use Case:

● Assuming that: The User has successfully logged in and now resides at the
user dashboard page, there should be a list of links to functions in which task
creator is one of them. The user clicks the link for task creator.

● A new page is loaded called New Event, this page prompts the user for the
information of their needed task: title, description, Start time
(year/month/day hour/minute), End time(year/month/day hour/minute).

● After the user has entered the desired specifications of their task, they can
create the task by clicking “Create Event”, or they can cancel the process by
using the “Back” link.

● The User clicks the “Create Event” link and is brought to a new page which
lets them review their newly created task info. The page also validates the
creation of a task by displaying success to the user. If the user would like to
edit the task they can click Edit which brings them to an Edit task page that is
the same as the Create event page. If the user clicks back they are brought to
their Event page, which lists all current tasks including the newly created one
to the user. They have the option to create a new task from this page.

PLAN:
Files of most Importance :
 event_controller.rb (describes the functionality of the event/task creation etc.)
 events/_form.html.erb (Describes the view of the user and what information the task
requires)

User Dashboard HTML: The following HTML shows the three feature buttons on the
dashboard, and the page linked to it. The task creator page is linked to the events/new
page, which renders an event form.

Event Form HTML: This page is rendered when the Task creator link is pressed from the
User Dashboard. The User has the ability to enter task information on this page.

 <%= form_for(event) do |f| %>

 <% if event.errors.any? %>

 <div id="error_explanation">

 <h2><%= pluralize(event.errors.count, "error") %> prohibited this event from being

saved:</h2>

 <% event.errors.full_messages.each do |message| %>

 <%= message %>

 <% end %>

 </div>

 <% end %>

 <div class="field">

 <%= f.label :title %>

 <%= f.text_field :title %>

 </div>

 <div class="field">

 <%= f.label :description %>

 <%= f.text_area :description %>

 </div>

 <div class="field">

 <%= f.label :start_time %>

 <%= f.datetime_select :start_time %>

 </div>

 <div class="field">

 <%= f.label :end_time %>

 <%= f.datetime_select :end_time %>

 </div>

 <div class="actions">

 <%= f.submit %>

 </div>

 <% end %>

Events Controller: This controller class handles the creation, destruction, editing, and
indexing of tasks(referred to as events in our code). When a new task is created, the create
handler handles saving the user inputted information from the form as a new event in the
database. When the User wishes to edit an event, the update controller is used to store the
new information. The index action is used to show all of the User's current tasks.,
displaying all of their specific information such as start and end date.

 class EventsController < ApplicationController

 before_action :set_event, only: [:show, :edit, :update, :destroy]

 # GET /events

 # GET /events.json

 def index

 @events = Event.all

 end

 # GET /events/1

 # GET /events/1.json

 def show

 end

 # GET /events/new

 def new

 @event = Event.new

 end

 # GET /events/1/edit

 def edit

 end

 # POST /events

 # POST /events.json

 def create

 @event = Event.new(event_params)

 respond_to do |format|

 if @event.save

 format.html { redirect_to @event, notice: 'Event was successfully created.' }

 format.json { render :show, status: :created, location: @event }

 else

 format.html { render :new }

 format.json { render json: @event.errors, status: :unprocessable_entity }

 end

 end

 end

 # PATCH/PUT /events/1

 # PATCH/PUT /events/1.json

 def update

 respond_to do |format|

 if @event.update(event_params)

 format.html { redirect_to @event, notice: 'Event was successfully updated.' }

 format.json { render :show, status: :ok, location: @event }

 else

 format.html { render :edit }

 format.json { render json: @event.errors, status: :unprocessable_entity }

 end

 end

 end

 # DELETE /events/1

 # DELETE /events/1.json

 def destroy

 @event.destroy

 respond_to do |format|

 format.html { redirect_to events_url, notice: 'Event was successfully destroyed.' }

 format.json { head :no_content }

 end

 end

 private

 # Use callbacks to share common setup or constraints between actions.

 def set_event

 @event = Event.find(params[:id])

 end

 # Never trust parameters from the scary internet, only allow the white list through.

 def event_params

 params.require(:event).permit(:title, :description, :start_time, :end_time)

 end

 end

