BEST-DInIiNg

DESIGN DOCUMENT PRESENTATION

Peijmon Kasravi, Nicholas Mangoba, Sonny Banh, Branden Cassi



MV C Architecture

Views

Customer_View

create_customer create_reservation Restaurant_View

cust_id - Int ¢ id - Int
cust_name - String de before - Bool view_queue activate_table
password - String num_people - Int
status - Boo

customers - Int Array table_id - Int
ready - Boo

view_queue login

cust_name - String

customer - Int Array e
password - String

table customer
Controller

table_id - Int cust_id - Int
ready - Boo cust_name - String
' password - String

add_queue() update_queue()

new(reservation) newireservation)
destroy(reservation)

res tion

cust_id - Int add_cust{) update_tables()
index - Int

new{customer)
whosNext() destroy(table)




MV C Architecture: View Classes

» Class: create _customer

» Includes cust_id -> unigque identifier for each customer. cust_name, and
cust_password to store info about each customer for login validation

» Class: create_reservation
» cust_id to be able to identify who made the reservation

» made before boolean value stores whether or not customer made the
reservation in advance

» contains an array of customer id’s, used to display the current queue so
customers may see their position in line



MV C Architecture: View Classes

» Class: login

» Used for validation when customers login. Contains cust_name and
password which customers will be using when logging in

» Class: activate table

» Contains table_id which is unique identifier for each table. Also, ready
boolean value to determine if table is ready for a party to be seated



MV C Architectiure:
Controller Classes

>

>

Class: add_queueg() - contains code 1o add a new reservation to
the queue

Class: add_cust() - contains code for when a new customer registers
and creates a profile.

Class: update_queue() - contains code o update queue when a
new reservation has been made, as well as when a party gefts
seated and is removed from the queue.

Class: update_tables() - contains code to update available tables
when the host determines a table is ready



MV C Architecture: Model Classes

» Class: table

» Objects of the different tables that the restaurant has, including
variables about whether or not the table is ready.

» Class: customer

» Objects of all the current accounts registered with id, name, and
passwords.

» Class: reservation

» Objects that notifies host and/or customer what reservation is ready to
be seated with whosNexi()



UML Sequence Diagram:
Activate Table

interaction BEST Sequence Diagram )

Wish to seat customer

Log into account

Input Username

Input Password

Choose table

«Create»

eactivated Table

isDeactivated(table)

Seat customers at activated table




Entity Relationship Diagram

Reservation ID

Customer Register Reservation

Seated

Number of Seats

Availability




Entity Relationship Explanation

» Customer

» Contains four attributes (Customer ID, Name, Party Size, Reservation ID).
Customer ID is the primary key and Reservation ID is a foreign key
obtained from the Reservation entity

» Reservation

» Contains the Reservation ID and Customer ID attributes. The Reservation
ID is the primary key and Customer ID is the foreign key obtained from

the Customer entity

» Table

» Contains Table ID, Number of Seats, Availability, and Customer ID as its
attributes. The Table ID is the primary key and Customer ID is the foreign
key obtained from the Customer entity




Relational Schema Diagram

Customer
Customer ID
Name
Party Size
Reservation ID

Reservation
Reservation ID
CustomerID (7¥)

Table ID

Number of Seats
Availability
CustomerID (Fx)




