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MV C Architecture: View Classes

» Class: create _customer

» Includes cust_id -> unigque identifier for each customer. cust_name, and
cust_password to store info about each customer for login validation

» Class: create_reservation
» cust_id to be able to identify who made the reservation

» made before boolean value stores whether or not customer made the
reservation in advance

» contains an array of customer id’s, used to display the current queue so
customers may see their position in line



MV C Architecture: View Classes

» Class: login

» Used for validation when customers login. Contains cust_name and
password which customers will be using when logging in

» Class: activate table

» Contains table_id which is unique identifier for each table. Also, ready
boolean value to determine if table is ready for a party to be seated



MV C Architectiure:
Controller Classes

>
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Class: add_queueg() - contains code 1o add a new reservation to
the queue

Class: add_cust() - contains code for when a new customer registers
and creates a profile.

Class: update_queue() - contains code o update queue when a
new reservation has been made, as well as when a party gefts
seated and is removed from the queue.

Class: update_tables() - contains code to update available tables
when the host determines a table is ready



MV C Architecture: Model Classes

» Class: table

» Objects of the different tables that the restaurant has, including
variables about whether or not the table is ready.

» Class: customer

» Objects of all the current accounts registered with id, name, and
passwords.

» Class: reservation

» Objects that notifies host and/or customer what reservation is ready to
be seated with whosNexi()
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Entity Relationship Diagram
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Entity Relationship Explanation

» Customer

» Contains four attributes (Customer ID, Name, Party Size, Reservation ID).
Customer ID is the primary key and Reservation ID is a foreign key
obtained from the Reservation entity

» Reservation

» Contains the Reservation ID and Customer ID attributes. The Reservation
ID is the primary key and Customer ID is the foreign key obtained from

the Customer entity

» Table

» Contains Table ID, Number of Seats, Availability, and Customer ID as its
attributes. The Table ID is the primary key and Customer ID is the foreign
key obtained from the Customer entity




Relational Schema Diagram
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