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ABSTRACT
As asserted by the Institute of Medicine, sound health policy and
investment decisions require use of “what if” simulation models
to analyze the potential impacts of alternative decisions on health
outcomes. The challenge is that high-level health decisions require
understanding complex interactions of diverse systems across many
disciplines both inside and outside of healthcare, creating a need
for experts across widely different domains to combine their data
and models. Splash—the Smarter Planet Platform for Analysis and
Simulation of Health—is a novel decision support framework that
facilitates combining heterogeneous, pre-existing simulation mod-
els and data from different domains and disciplines. Splash lever-
ages and extends data integration, search, and scientific-workflow
technologies to permit loose coupling of models via data exchange.
This approach avoids the need to enforce universal standards for
data and models, thereby facilitating both model interoperability
and reuse of models and data that were independently created or cu-
rated by different individuals or organizations. In this way Splash
can help domain experts from different areas collaborate effectively
and efficiently to attack complex health problems. We illustrate
Splash’s architecture and capabilities using a simple, proof-of-con-
cept model of community obesity. We show how models of trans-
portation, eating habits, food-shopping choices, exercise, and hu-
man metabolism can be combined with geographic, store location,
and population data to play "what if," asking, for instance, how
community obesity measures would change if tax incentives are
used to encourage grocery chains selling healthy and inexpensive
food to open stores near obesity "hot spots."

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Programmer Workbench;
D.2.12 [Interoperability]: Data mapping; I.6.8 [Types of Simula-
tion]: Combined; J.3 [Life and Medical Sciences]: Health
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1. INTRODUCTION
Making good health policy and investment decisions requires not

just the gathering, mining, statistical analysis, and visualization of
data, but also the use of “what if” simulation models to analyze the
potential impacts of alternative decisions on health outcomes [20,
23]. Such modeling and analysis is very challenging, because high-
level health decisions frequently require understanding complex
interactions of diverse systems across a great many domains and
disciplines, far beyond the healthcare system itself; i.e., genetics,
behavior, and environment all interact. For example, the problem
of chronic obesity [28] is influenced by a broad array of factors
at many levels—such as individual psychology and metabolism,
food prices, advertising, transportation, agriculture, education, san-
itation, government policies, and international trade—and requires
a systems-oriented approach to modeling that brings together ex-
perts across disciplines to analyze different aspects of the larger
problem [21]. Even the food system considered by itself is com-
plex [17], creating a need for modelers across very different do-
mains to compare models, share results, and integrate efforts. It
is not surprising, then, that the Institute of Medicine [23] has rec-
ommended that the Department of Health and Human Services ad-
vance the use of system-based simulation models to better under-
stand the underlying determinants of health and assess intended and
unintended outcomes associated with policy, funding, investment,
and resource decisions.

In the area of health informatics, modern technology for infor-
mation management, data analytics, and computer simulation has
been increasingly successful in providing decision support for indi-
vidual caregivers and healthcare administrators. The key question
addressed in this paper is whether such technology can be used
to help experts across highly diverse domains collaborate to solve
broad, complex health problems. Clearly, no single dataset, model,
or knowledge base can capture all factors related to health, so at
issue is whether individual well-established models and data from
different disciplines can be (incrementally) composed to develop
comprehensive models for supporting scientifically sound health
decisions. Without any technological assistance, this task is ex-
tremely hard, because domain experts have different worldviews,
use different vocabularies, sit in different organizations, and have
often invested considerable effort in developing and implementing



their models using different programming paradigms and develop-
ment platforms. Based on our extensive experience in data integra-
tion, we feel that any approach to collaboration that requires use of
universal data formats or computing environments, or that requires
scientists to recode their models to common standards or APIs, is
doomed to failure. This paper therefore proposes an alternative ap-
proach to facilitating cross-domain collaboration for modeling and
simulation of health, and describes a prototype system that imple-
ments this approach.

Specifically, this paper presents Splash—the Smarter Planet Plat-
form for Analysis and Simulation of Health—a novel decision sup-
port framework that facilitates combination of heterogeneous, pre-
existing simulation models and data from different domains and
disciplines. Splash enables interoperability and reuse of models
and data that were independently created or curated by different in-
dividuals or organizations, thereby helping domain experts from
different areas to collaborate effectively and efficiently to lever-
age their combined knowledge. The resulting composite simulation
models can be used to conduct deep predictive analytics, enabling
“what-if” analyses that cut across disciplines, attacking complex
health problems that cannot be solved using expertise from only a
single domain. We envision that the community of Splash users
will include domain experts who contribute models and data, sci-
entists and policy analysts who compose the models and data to
run simulation experiments using the composite models, and, ulti-
mately, decision makers who use the results from Splash to inform
their policy and investment decisions.

The basic technical approach underlying Splash is semi-automat-
ed, loose coupling of models via data exchange. In Splash, models
run asynchronously and communicate with each other by reading
and writing datasets via file I/O, database accesses, or web-service
calls; data transformations are applied as needed for compatability.
Fully automated composition of tightly coupled simulation mod-
els is well known to be extremely challenging [14]; Splash tries to
simplify the problem by exploiting and extending techniques from
semi-automated data integration [19]. The idea is to provide graph-
ical user interfaces (GUIs) that simplify both selection of compo-
nent models and specification of complex mappings between the
input and output datasets for these models, while automating more
mundane tasks such as conversion of measurement units, spatio-
temporal alignment between models, statistical calculations, and
so on. Splash’s loose-coupling approach minimizes changes that
need to be made to existing models, facilitating reuse and collabo-
ration. Splash uses semantic search methods to identify relevant
and compatible component models in its repository. Scientific-
workflow technologies are exploited to orchestrate execution of the
final, composite model; both models and data may be distributed
across different platforms. Splash relies heavily on user-supplied
metadata about data sources, models, and mappings; this metadata
is specified in a unified manner using a novel, XML-based Splash
Actor Description Language (SADL).

We describe the architecture and capabilities of Splash in the
context of a simple, proof-of-concept composite model of com-
munity obesity. In our hypothetical scenario, we show how in-
dependently created models of transportation, eating habits, shop-
ping choices, exercise, and metabolism can be combined with ge-
ographic data, store location data, and population data to explore
the potential consequences of health policy decisions on obesity, as
measured by body mass index (BMI). An example of a policy ques-
tion related to obesity is: “How would a community’s average BMI
change if grocery chains selling healthy and inexpensive food re-
ceived tax breaks for building stores near obesity hot spots?” (Such
hot spots often correspond to low-income areas.) Our aim in this

paper is not to develop a full-scale, validated, policy-ready obesity
model. Rather, our goal is to illustrate the basic design and capabil-
ities of our platform to show how our model-composition approach
can potentially be used to promote interdisciplinary collaboration
around chronic obesity and other complex health issues.

Splash is a work in progress, and so our discussion centers on
those features that are already either present or currently being im-
plemented in our research prototype. Throughout, we discuss work
that remains to be done, and at the end, we discuss some important
open research challenges for Splash.

2. AN OBESITY SCENARIO
In this section, we describe our hypothetical obesity scenario,

along with some relevant component models and data sources. In
the next section, we describe how Splash can be used to combine
these models and data into a composite model suitable for what-if
analysis.

In our scenario, government policy makers want to determine the
most cost-effective way to reduce obesity—that is, BMI levels—
in the population of an urban area. There are many possible ap-
proaches. For example, the government could provide incentives
for a supermarket chain to place a store that sells healthy and rea-
sonably priced food at a specific location, or build more playgrounds
in certain neighborhoods, or give citizens a tax credit for enrolling
in an exercise program, or spend more on nutrition education in
schools. Which combination of these approaches is most cost ef-
fective?

Diverse factors influence obesity levels, including transportation,
buying and eating behavior, availability of exercise facilities, and
the impact of each on individual and aggregate BMI values. Our
obesity scenario entails models of these factors, as well as the data
sources that feed these models. The data sources are heteroge-
neous and independently created, as are the models, which also
rely on differing technologies—programming languages, operating
systems, simulation paradigms, and so forth—and embody differ-
ing assumptions. The component models and data sources used
in our proof-of-concept composite model are as follows (see Fig-
ure 1).

Buying-and-eating model. We used a simple agent-based model,
adapted from [3], that simulates the grocery-store shopping behav-
ior of households over time, tracking each individual household
and grocery store in the hypothetical urban area. The model takes
into account the food preferences of each household, travel time to
the different grocery stores, the household’s purchasing history, and
social factors, such as where a household’s neighbors are currently
shopping. Grocery stores may close down as a result of poor sales
and new stores may open. The input to the model comprises travel
time information (from a transportation model) and a modifiable set
of input parameters, such as the percentage of grocery stores serv-
ing healthy food and the percentage of high-income households.
The model outputs the state of all households and stores at each
simulation tick. We implemented this model using NetLogo [33].

Transportation model. We used VISUM [30], a commercial traf-
fic-flow simulation software package that can simulate different
modes of public and private transport to determine the impact of
traffic demand based on a number of factors, including the road in-
frastructure and various demand patterns (which may be specified
exogenously to VISUM). VISUM outputs various statistics, includ-
ing the average travel times between different urban zones.

Exercise model. We used a simple discrete-event stochastic sim-
ulation model of exercise-facility use that we developed in-house.
It takes as input a set of parameters such as number of households,
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Figure 1: Models, data sources, and mappings for the obesity scenario.

number of exercise facilities, capacity of each facility, base calo-
ries burned per unit of exercise time at each facility, and probability
distributions that govern the frequency and duration of exercise pe-
riods for each household. The model returns as output the number
of kilocalories burned by each household member per simulation
tick. We implemented this model in C++.

BMI model. We used the “three compartment” energy balance
model of Hall and Chow, as described in [29]. This BMI model is a
deterministic model that predicts daily BMI changes for an individ-
ual based on daily food consumption and physical activity. More
specifically, the model uses a set of coupled ordinary differential
equations that link exercise level and intake of carbohydrates, fat,
protein, and sodium to changes in body mass, broken down as lean
mass, fat mass, and extracellular fluid. These body-mass quantities
are added and normalized to obtain BMI. Following [29], initial
values for various types of body mass as a function of age, gender,
height, and weight were obtained from regression models derived
from empirical studies. The input to the model is a time series, for
each individual, of their daily food intake, as above, and daily kilo-
calorie burn rate from exercise, and the output is a time series, per
individual, of BMI.

Data sources. Our example uses four main data sources. The GIS
data source contains geographical information about an urban area,
such as road networks and zone configurations. The population-
demographics data source contains information about the charac-
teristics of each person in a household, including age, weight, and
height. The store-demographics data source contains nutritional
characteristics of the food sold at each store. Finally, the exercise-
facility data source contains information about the exercise facili-
ties in the hypothetical urban area, such as capacity, type of exer-
cise, and so on. These data sources were synthetically created to
test the Splash platform, but publicly available data sources could
also be used [11, 31].

3. SPLASH IN DETAIL
The basic architectural components of Splash are illustrated in

Figure 2. Using the obesity scenario as an example, we describe
the role of each of these components in creating, executing, and
analyzing composite simulation models. All components rely on
metadata about models, data sources, and mappings—Section 3.2
describes the SADL language used to specify this metadata.

3.1 Using Splash
In Splash, domain experts contribute (and use) component mod-

els and data sources. By component model, we mean a simulation,
optimization, statistical, or other model implemented as a computer
program that takes data as input and produces data as output. Each
model carries its own set of assumptions and has its own set of re-
quirements and constraints on the input and output data. A data
source or dataset simply refers to a collection of structured or un-
structured digital information. Contributors register their models
and data sources in the Splash repository. A designer of a com-
posite model can then discover these components, connect them
together, set up and run simulation experiments, and subsequently
analyze, visualize, and share the results; see the center column of
Figure 2. The new composite model, as well as any useful datasets
generated during the simulation experiments, can be registered in
the repository and thus be made available to other model designers.

We now give a detailed description of each Splash workflow step,
in the context of our obesity example.

Registration. Models and data must be registered with Splash be-
fore they can be used, to create Splash model actors and Splash
data actors. These “actors” are components of Splash that encap-
sulate the framework’s knowledge about the various models and
data sources. This knowledge is specified via SADL metadata files
that are created by the system as part of the registration process (see
Section 3.2 for details). A user can also design and register Splash
mapping actors, which handle the data transformations between
the outputs of one or more models and the input of another. Splash
model, mapping, and data actors are connected to each other by
the designer of a composite model, and Splash model and mapping
actors are invoked for execution during the course of a simulation
run.

Model, data, and mapping discovery. Our prototype does not
yet support a search capability over the Splash repository, but this
functionality will become increasingly important as the size of the
repository grows. We envision that to create a composite model
in Splash, a user will search through the repository using keyword
queries or structured queries over the metadata (SADL) associated
with Splash model, data, and mapping actors. Using ontologies
and ranking techniques, the discovery component will retrieve and
display the “most relevant and compatible” models and data. For
example, because the SADL file of the buying-and-eating model
mentions “travel times” as one of its inputs, Splash may suggest the
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Figure 2: Basic components of Splash.

transportation model as a potentially compatible upstream model
because its SADL specifies “travel times” as an output. Ontologies
can be especially helpful in dealing with variations of terminology
within and between different domains of expertise.

Composite-model design. Splash relies on the Kepler scientific
workflow system [25] to provide a visual design environment; in-
deed, our “actor” terminology derives from Kepler. A user designs
a composite model by dragging icons—which represent Splash data
actors, model actors, and mapping actors—from the repository win-
dow and dropping them into the design workspace. The user then
connects the components and configures the mapping actors. Fig-
ure 3 displays our composite model for the obesity example. Note
that the composite-model structure is immediately apparent from
the graphical representation. For example, the join-demographics
mapping actor is dependent on the outputs of the buying-and-eating
and exercise models, and the buying-and-eating model in turn is
dependent on the output of the zone-coordinate mapper. A nice
feature of the design environment is that a set of connected Splash
actors can be encapsulated as a “complex actor” and then added to
the Splash repository; Splash is therefore well suited to the design
of hierarchical models.

Because Splash is implemented on an extensible scientific work-
flow platform, it is relatively easy to add new types of actors to
Splash by simply providing appropriate metadata. For example,
we could add “data cleaning actors” that could be executed (per-
haps during an initialization phase) as part of a composite Splash
model. Such actors could deal with situations in which individual
data sources are dirty, or in which data sources that provide over-
lapping information contain inconsistencies. In this way, all data
passed to component models will be clean and consistent. Such ac-
tors can simply invoke existing software packages for data cleaning
and inconsistency resolution.

A key part of designing a composite model is the design of the
various data transformations. We next discuss Splash’s support for
mapping design.

Mapping design. In contrast to tightly-coupled integration frame-
works such as [18, 26], models in Splash are loosely-coupled via

data exchange; i.e., models are connected via transformations that
convert datasets output by one model into a format suitable for in-
put to another model. This loose coupling is possible because every
data source is abstracted by a schema and every model is abstracted
by a pair of input and output schemas. For instance, a schema might
specify that patient data is organized as a series of records whose
first field is an integer called “patient number,” whose second field
is a character string called “patient last name”, and so forth. Often,
the successive records in a data source represent a time series of
observations that are input to or output from a simulation model;
the schema then specifies the structure of the information recorded
at each observation time. Schema mappings or data transforma-
tions refer to specifications of how data is to be translated from one
schema (the source schema) into another (the target schema), and
are embodied by Splash mapping actors. For example, the “daily
protein purchased” attribute in a source schema that corresponds to
the output of a buying-and-eating behavior model might be mapped
to the “daily protein ingested” attribute in a target schema that
corresponds to the input to a human-metabolism model (assuming
100% ingestion of purchased food). To semi-automatically design
the different data transformations—that is, to semi-automatically
configure the Splash mapping actors—Splash relies on Clio++, an
enhanced version of the Clio [19] tool for design of schema map-
pings.

A fully configured Splash mapping actor represents a simulation-
specific schema mapping, a declarative description of the transfor-
mation from the outputs of one or more models and data (source
schemas), to the input of another model (target schema). Such
schema mappings are more expressive than traditional schema map-
pings (as in [7, 19]) because they may contain time-alignment func-
tions that describe how to aggregate, interpolate, or allocate values
to overcome mismatches in time interpretations between models,
as well as space-alignment functions that describe how to handle
geospatial mismatches. A Splash mapping actor contains informa-
tion about how to execute its data transformation, along with an
optional internal representation of the mapping, and can be regis-
tered in the Splash repository for later reuse or modification. The
process of semi-automating such simulation-specific schema map-



Figure 3: Splash graphical representation of the composite obesity model.

pings relies largely on information derived from SADL files of par-
ticipating models and data sources.

Our obesity example requires two data transformations:

Zone-coordinate mapping. The transportation model re-
ports average travel times between zones (i.e., regions). How-
ever, the buying-and-eating model needs to determine travel
times between a household and a grocery store based on ge-
ographical coordinates (latitude and longitude). The zone-
coordinate mapping is designed to overcome the spatial mis-
matches between the two models.

Join-demographics mapping. This data transformation com-
bines the output of the buying-and-eating model and exercise
models with the demographics data into a format that can
be used as input by the BMI model. This mapping func-
tion also needs to overcome unit mismatches and time mis-
matches that occur between models (see below).

These data transformations can be specified manually or generated
semi-automatically using Clio++. In our example, we manually
specified (via a custom Java program) the zone-coordinate map-
ping, which maps (latitude, longitude) coordinate pairs to the corre-
sponding zones used by the VISUM transportation model. During
a simulation run, the Java program is executed on the output data
produced by VISUM to create a data file containing travel times be-
tween pairs of locations, where each location is specified as a (lati-
tude, longitude) coordinate pair; this file is of the form expected by
the buying-and-eating model. We plan to enhance Splash to deal
semi-automatically with various kinds of GIS data.

For the join-demographics mapping, we used Clio++ to inter-
actively design the data transformation. During the design pro-
cess, Splash used the SADL metadata to automatically detect a time
mismatch: the buying-and-eating model generates a time series in
which a simulation tick corresponds to two days of elapsed time,
whereas the BMI model expects a time series in which a simula-
tion tick corresponds to one day of elapsed time. Splash there-
fore popped up a time-aligner GUI so that the user could specify
a desired time-alignment transformation (a linear, cubic spline, or
nearest-neighbor interpolation in our example). In general, the GUI
will display a menu of suitable time alignment operations, specify-

ing options for aggregating, interpolating, or allocating time series
data to effect a desired time alignment; see Figure 4. The time
alignment GUI will automatically glean from the SADL metadata
the information needed to handle missing data, “boundary” data
points at the beginning or end of a time series, and so on.

After the time alignment step, Clio++ popped up a GUI that
allowed us to visually specify, for every simulated time step, the
relationships between the source schemas (i.e., the demographics
data sources and the output files generated by the various models)
and the target schema (i.e., the input schema of the BMI model).
Figure 5 shows how a user can draw lines to connect attributes in
a source and a target schema. This specification determines the
procedure by which the demographics data and the various time
series produced by the simulation models are joined into the sin-
gle time series expected by the BMI model. During the process
of associating attributes in the source and target schemas, Clio++
automatically generates transformations that correct mismatches in
measurement units (such as pounds to kilograms). In the future,
Clio++ will also have the capability to draw an initial set of “sug-
gested” lines between the target and source schemas, which can
then be tweaked by the mapping designer.

Once the visual specification of a mapping is complete, Clio++
compiles the specification into executable code that is invoked dur-
ing each simulation run of the composite model. In our current
protoytpe, the target platform for such code is Hadoop [2], which
runs on commodity hardware and is well suited to robust, massive
parallel processing of the large amounts of data created by complex
simulation models.

Composite-model execution. For each simulation run of the com-
posite model, Splash uses Kepler’s “director” mechanism to or-
chestrate the execution of the component Splash model actors and
mapping actors. In our example, the transportation model executes
first, followed by the zone-coordinate mapper. Then the buying-
and-eating model may execute in parallel with the exercise model.
When both models have completed, the join-demographics map-
ping is executed, followed by execution of the BMI model.

More generally, a simulation run may consist of multiple Monte
Carlo repetitions. Currently, Splash only uses the most basic di-
rector functionality, specifying the number of times to execute the



Figure 4: Visual time-alignment interface for designing time alignment transformations.

Figure 5: Visual mapping-design for designing structural data transformations.

overall composite model during a run. In the future, we plan to en-
hance Splash to permit more intricate orchestrations in which the
user might specify the number of replications for each component
model and how the replications should be combined together. (E.g.,
for fixed values of the model parameters, a deterministic compo-
nent model whose input comes only from static data sources should
only be executed once per simulation run, since it will produce the
same output at every execution.) We also plan to enhance Splash

to automatically or semi-automatically deal with statistical issues
such as management of pseudo-random numbers [34].

In the current version of our composite obesity model, all models
and data sources reside on the same computer as Splash. In gen-
eral, Splash can execute models remotely; indeed, upon invocation,
a Splash model or mapping actor simply synthesizes an appropriate
command line string for executing the model or mapping code and
sends it to an appropriate destination. This remote execution capa-



bility can be important if certain models must be executed behind
a firewall for security or privacy reasons. We intend to enhance
Splash with mechanisms for automatically reconfiguring parts of a
simulation-experiment workflow among distributed data and mod-
els, factoring common operations across different mappings in the
workflow, and avoiding redundant computations within a run.
Experiment design. After building a composite simulation model,
a user may also design experiments to be run using this model,
specifying the model-parameter values to be used for each simu-
lation run in the overall experiment. In the future, we plan to en-
hance Splash to permit easy specification of experimental designs
to support, for example, factor screening and other types of sensi-
tivity analysis for the composite model, as well as simulation-based
optimization of model parameters and root-cause analysis of un-
expected or unusual simulation results. Such a capability should
avoid redundant computations between simulation runs. Another
planned enhancement will provide a “dashboard” that gives the user
a unified view of all of the parameters for a given simulation exper-
iment or set of experiments; this feature can help users understand
the behavior of complex composite models and facilitate interactive
experimental design.

Collaborative Reporting and Visualization After running a sim-
ulation experiment, the user can review the results. Kepler, and
hence Splash, natively supports the R package for statistical anal-
ysis, data mining, and visualization [13]. Other packages can be
used as well. For example, we visualized the results from sample
runs of our composite model by plotting a few simple graphs—see
Figure 6—using FusionCharts [16].

Recall that our example is a simple proof-of-concept model on
synthetic data, and so the results are merely illustrative and not
necessarily realistic. Nonetheless, the graphs illustrate some inter-
esting phenomena. The first graph shows that the average BMI of
our hypothetical population decreases over time as a consequence
of the opening of a healthy and inexpensive grocery store in a poor
neighborhood. The decrease in BMI is more noticeable for the poor
population than for the wealthy population, because the latter popu-
lation already had good access to healthy food prior to the opening
of the new store. This simulation assumes that the roads around
the store are engineered so that the presence of the new store does
not cause additional traffic delays. The second graph shows what
happens if the roads are not re-engineered, so that the opening of
the new store leads to increased traffic delays. In this scenario,
the decrease in BMI becomes much less pronounced: it now takes
longer to reach the new grocery store, so fewer people are inclined
to shop there and the potential health benefits to the lower-income
population are largely unrealized. Thus, even this simple model-
ing exercise demonstrates the value of combining multiple system
models when trying to predict the effect of a proposed health policy
decision.

In addition to supporting analysis and visualization tools for in-
dividual Splash users, we envision that Splash will also support a
collaborative forum similar to ManyEyes [27], in which data and
visualizations can be uploaded, shared, annotated, and rated by a
community of users.

3.2 Splash Actor Description Language
As can be seen, the metadata specified in SADL files plays a

crucial role in Splash, enabling model and data discovery, model
composition, and composite-model execution. In this section we
illustrate the contents and syntax of the SADL files used by Splash.

Recall that SADL files for models, data, and mappings are cre-
ated as part of the registration process. For a data source, the

provider must specify information such as the schema, data-source
location, commands (if needed) to access the data, temporal and/or
spatial metadata, and so on. For a model, required information in-
cludes the type of model, input and output data sources, and where
and how the model is to be accessed and executed. The various
schemas are specified in industry-standard XSD format (a dialect
of XML).

Figure 7(a) displays a snippet of the SADL file for the BMI
model. As can be seen, the description language uses XML-style
syntax. The file contains information such as the model’s owner—
i.e., the user who registered this model in Splash—and references
about the model, such as scientific papers, URLs, and reviews. The
SADL description also contains information about the history of
edits made to the SADL file (not shown), a summary description
of the model’s functionality, and so on. The Actor tag contains
basic information about the type of Splash actor being described—
model, data, or mapping—using extensible taxonomies of models
and data sources. In our example, the SADL description states
that the BMI model is a continuous-time, deterministic simulation
model.

The SADL file also specifies where the model is located and how
it is to be executed. In our example, the BMI model resides locally
in the directory $EXEC_DIR/Models. However, as indicated on
the left of Figure 2, not all models and data reside locally to Splash.
Some of the models or data may be accessed via web-service calls
or other remote execution protocols, in which case the precise in-
vocation method is specified in the SADL file.

Under the Arguments tag, the SADL file references two other
SADL files—BMIInput.sadl and BMIOutput.sadl—that
describe the data sources corresponding to the inputs and outputs of
the BMI model. In general, multiple input and output data sources
can be referenced, depending on the data input and output structure
of a given model.

SADL file for mappings (not shown here) are similar to those
for models, comprising pointers to source and target schema files
as well as to the file containing the internal representation of the
mapping. Such a SADL file also contains the information needed
to invoke the data transformation code during a simulation run.

Figure 7(b) shows a snippet of BMIInput.sadl, which de-
scribes the input data source expected by the BMI model. In our
example, the SADL description states that the data source com-
prises time-series data in the form of a comma-delimited file. The
observations are given at regular intervals, and each tick corre-
sponds to one simulated day of elapsed time. The time appears
explicitly in the data file as the tick attribute. The path to this
file is given by $EXEC_DIR/Data/BMIInput.del—thus the
file is a local file—and the file conforms to the schema described
in BMIInput.xsd; a snippet of this latter schema file is shown
at the bottom of Figure 7(b). The BMIInput.sadl file also de-
scribes important characteristics of each attribute (i.e., field) in the
data source records, such as measurement units and a description of
the semantics of the attribute. For example, weight is in pounds,
and the associated description states that this measurement is taken
before breakfast. Though not shown, the SADL file may also de-
scribe general constraints on possible data values, for example, that
weight must lie between 0 and 400 pounds or that pre-tax income
must exceed after-tax income; such information facilitates both er-
ror checking and model composition.

Note that SADL files contain semantic information about models
and data at both high and low levels, e.g., in the description
tags in BMI.sadl and BMIInput.sadl. Such information is
crucial for data and model integration. Semantic mismatches are
known to be a major impediment when composing models [14].
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Figure 6: (a) Effect on BMI by income of opening a store selling healthy and inexpensive food in a poor neighborhood, and (b) the
effect of a traffic increase.

Although dealing automatically with semantic mismatches is very
hard, the Splash SADL format encourages detailed semantic in-
formation to be maintained for models and data, facilitating semi-
automatic avoidance of semantic mismatches. Indeed, the mere
process of registering a model or dataset in Splash and generating a
SADL file can create valuable documentation. We plan to enhance
Clio++ to display low-level semantic information for each schema
attribute displayed in the GUIs of Figures 4 and 5.

In addition to the contents described above, a SADL file can in-
clude additional information, such as ownership, update history,
provenance, and access restrictions. The description language is
extensible, and its development ongoing.

4. RELATED WORK
There has been virtually no cross-domain simulation modeling

for health. A number of studies on obesity and other health is-
sues have attempted to bridge multiple domains (e.g., [9]), but all
of these studies manually bring together a variety of data sources,
and then use the data to develop statistical regression or time-series
models. Such models can describe existing statistical patterns and
corelations well, but can only be used for prediction if the future
is—statistically speaking—fundamentally like the past; for exam-
ple, if historical disease trends continue or if consumers continue
to behave as they have up until now. Because statistical models
alone do not allow reliable extrapolation to scenarios other than
those that produced the historical or training data, such techniques
do not provide the deep what-if capability, based on first principles,
that serves as the basis for robust decision support. For example,
a statistical time series model can reasonably predict rainfall over
the next few days, but a simulation model of climate based on the
laws of physics is needed to predict the effect of an unexpected in-
crease in CO2 levels on rainfall over the next decade. Splash aims
to enhance datasets and statistical models with deep predictive sim-
ulation models to provide decision support for health.

The Splash approach to composite modeling—loose coupling
via data exchange—was inspired by recent developments in infor-
mation management, and has not really been explored before, ei-
ther in health or in other domains. A common alternative modeling
approach is to create a “monolithic” model that encompasses all
relevant domains. This can be accomplished by writing a single

simulation program in a programming language such as C++, Java,
or Python, or in a generic simulation programming environment
such as Arena [24], which is oriented toward stochastic discrete-
event simulation, or AnyLogic [1], which can simultaneously han-
dle discrete-event, agent-based, and system-dynamics models. As
the size and scope of such models increases they become extremely
difficult and expensive to build, verify, validate, and maintain; see,
e.g., [12] or [14, pp. 4–6]. Perhaps more fundamentally, building
such a monolithic model typically involves understanding and im-
plementing a body of knowledge in each domain, which limits fea-
sibility in many cases. For instance, consider a monolithic model of
the effects of climate on agriculture, and vice versa. Each domain
would take years to model and understand, and model development
would require continual close interaction between climate and agri-
culture experts, who generally work in different organizations; such
fine-grained collaboration would likely be slow and cumbersome in
practice.

For this reason, simulation modelers have been moving toward
component models. In an integrated component modeling frame-
work, each component model is a piece of code, usually written
in a specified programming language, that is compiled together
with other component models into an overall simulation program.
Examples of such frameworks include the STEM epidemiological
model [15], in which component models are implemented as Java
plug-ins to the Eclipse modeling framework, and the Community
Climate System Model [10], which comprises atmosphere, ocean,
land, and sea-ice component models together with a coupling mod-
ule, all written in FORTRAN-90. Although an improvement over
the monolithic approach, the integrated component approach still
requires that the models be written at least to a common interface
and often in a specified programming language (another example
is OpenMI [18]), which hinders re-use of existing models and can
discourage collaboration. As stated earlier, we believe that con-
vincing a broad range of domain experts to program to a common
standard is an exceedingly hard task.

Other approaches combine pre-existing models by adding cus-
tom logic for synchronized communication across models [26], or
requiring models to be written to a specified standard, such as the
DEVS framework [32]. Like the monolithic and coupled compo-
nent approaches, this strategy places heavy burdens on model de-



BMI.sadl

<Actor name="BMI Model" type = "model"
model_type = "simulation"
sim_type = "continuous-deterministic"
owner="Jane Modeler">

<Description>
Predict weight change over time based on an
individual’s energy intake (food intake),
sodium intake, and energy expenditure
(physical activity). Implemented in C.
reference: http://csel/asu.edu/?q=Weight

</Description>
<Environment>

<Variable name="EXEC_DIR" default="/Splash"
description="executable directory path"/>

<Variable name="SADL_DIR" default="/Splash/SADL"
description="schema directory path"/>

</Environment>
<Execution>

<Command>$EXEC_DIR/Models/BMIcalc.out</Command>
<Title>Run BMI model</Title>

</Execution>
<Arguments>

<Input name="demographics"
sadl="$SADL_DIR/BMIInput.sadl"
description="demographics data"/>

<Output name="people"
sadl="$SADL_DIR/BMIOutput.sadl"
description="people’s daily calculated BMI"/>

</Arguments>
</Actor>

BMIInput.sadl

<Actor name="BMIInput" type="data"
data_type = "time_series">
<Description>
Metadata of input data file of the BMI
model.

</Description>
<Time type="continuous" observations="regular"

field="tick" unit="day" value="1">
</Time>
<Data>
<Source mode="file"

uri="$EXEC_DIR/Data/BMIInput.del"/>
<Schema type="xsd"

uri="$SADL_DIR/Schemas/BMIInput.xsd"/>
<Format type="del" delimiter=","/>

</Data>
<Attributes>

<name="tick" unit="day"/>
<name="weight" unit="pound"

description="weight measured before
breakfast"/>

<name="height" unit="inch"/>
:

</Attributes>
</Actor>

BMIInput.xsd

:
<Element name="tick" type="double"/>
<Element name="weight" type="double"/>
<Element name="height" type="double"/>
<Element name="gender" type="string"/>
<Element name="income" type="string"/>
:

(a) (b)

Figure 7: (a) Snippet of SADL for the BMI model, and (b) SADL for BMI model’s input data source and the associated input schema
file.

velopers, often requiring deep changes to add the required logic or
to modify the model to adhere to the specified standard. Again,
these requirements discourage model sharing.

In contrast, Splash is similar to CIShell [8], an open-source soft-
ware platform that allows different algorithms, datasets, and tools
from different domains to inter-operate. The CIShell framework is
built upon the Open Services Gateway initiatives (OSGi) frame-
work; algorithms and data sources must be packaged as “OSGi
bundles” to inter-operate with other CIShell components. Both
CIShell and (future versions of) Splash provide wizard-driven pro-
cesses to solicit descriptive information (metadata) from the user
to generate the OSGi bundles and Splash actors. However, Splash
exploits Clio++ to facilitate the design of data mappings that allow
previously incompatible models and data to be combined, whereas
CIShell does not support semi-automated creation of mappings to
translate data from one program to another.

Finally, as is apparent from our description of Splash, we build
upon technology both for information integration [6, 19] and for
scientific workflow processing [4, 5, 22, 25]. Splash is well posi-
tioned to exploit future technological advances in these areas.

5. CONCLUSIONS AND FUTURE WORK
We have outlined the capabilities and design of the Splash plat-

form for combining heterogeneous existing models and data to sup-
port complex health decisions. Splash enables cross-domain “what
if” analyses that can help avoid unintended consequences and iden-

tify truly effective solutions to health issues. Our discussion has
been in the context of an obesity model, but clearly our technology
is potentially applicable to a broad range of applications in health-
care, public health, and beyond.

As suggested, there is much work to be done in enhancing the
Splash prototype with respect to ontology-aided model search, geo-
spatial alignment tools, advanced experimental design capabilities,
efficient simulation execution in the presence of distributed models
and data, enforcement of statistically valid Monte Carlo techniques,
comprehensive visualization of model inputs and outputs, and tech-
nologies for deep collaborative modeling and analysis. Moreover,
it is clear that issues of data privacy and security are critical in the
context of health decisions, and so must be handled effectively by
Splash. Another fundamental challenge is dealing with bidirec-
tional causality between models. For instance, it may be feasible
to approximate such causality by running models independently but
periodically exchanging data. Providing (and justifying) such func-
tionality poses both theoretical and system-design challenges.

Beyond these considerations, there is a range of broader ques-
tions to explore. What can be said at a general level about model
compatibility and patterns of model interaction? How can we most
effectively develop an active ecosystem of model users and model
providers around Splash? How can we decide when we have in-
tegrated a sufficient number of component models and data? How
can we validate the correctness of a composite model and explain
the results obtained? Can we leverage available validation results



for component models? How can the output from a Splash-based
analysis be turned into actionable decisions or policies?

A key step in addressing the issues raised above is to build “in-
dustrial strength” composite models, bringing state-of-the-art com-
ponent models and comprehensive, high quality data to bear on key
health issues. The time is right for harnessing decades of advances
in computer engineering, information management, optimization,
statistics, and simulation technology in the service of better deci-
sion making for health. Splash represents an initial step along this
path.
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