
Ronald Mak
University of California, Santa Cruz

Joan Walton
NASA Ames Research Center

The Collaborative
Information Portal and
NASA’s Mars Rover Mission

NASA Ames Research Center and the Jet Propulsion Laboratory jointly

developed the Collaborative Information Portal for NASA’s Mars Exploration

Rover mission.Mission managers, engineers, scientists, and researchers used this

Internet–based enterprise software application to view current staffing and event

schedules, download data and image files generated by the rovers, send and

receive broadcast messages, and get accurate times in various Mars and Earth

time zones.This article describes the application’s features, architecture, and

implementation, and conveys the lessons learned from its deployment.

In January 2004, the Mars exploration
rover (MER) mission successfully
deployed two robotic geologists —

Spirit and Opportunity — to opposite sides
of the red planet. As Figure 1 shows, the
rovers carry impressive arrays of cameras
and scientific instruments that send data
and images back to Earth, where ground-
based systems process and store the infor-
mation in file servers.1 After analyzing
the files, NASA scientists have concluded
that liquid water did in fact exist on the
surface of Mars in the distant past.2,3

However, the mission isn’t just about
rovers and data. On Earth, people manage
the mission, send commands to the
rovers, and analyze the downloaded
information. Computer scientists and
software engineers at NASA Ames
Research Center worked closely with the
mission managers at the Jet Propulsion
Laboratory (JPL) to create applications

that support the mission. One such appli-
cation, the Collaborative Information Por-
tal (CIP), helps mission personnel perform
their daily tasks, whether they work
inside mission control or the science areas
at JPL, or in their homes, schools, or
offices.

With a three-tiered, service-oriented
architecture (SOA) — client, middleware,
and data repository — built using Java,
industry standards, and commercial soft-
ware, CIP provides secure access to mis-
sion schedules and to data and images
downloaded from Mars. Its design satis-
fied JPL’s mission requirements for func-
tionality, scalability, and reliability, and
users can run the CIP client tools on Win-
dows, Unix, Linux, and Macintosh plat-
forms.

The CIP Client Application
Mission managers and engineers work-

20 JANUARY • FEBRUARY 2005 Published by the IEEE Computer Society 1089-7801/05/$20.00 © 2005 IEEE IEEE INTERNET COMPUTING

Sc
ie

nt
if

ic
 D

at
a

C
ol

la
bo

ra
ti

on

ing inside JPL’s mission control use NASA’s Deep
Space Network (DSN), an international network
of antennas, to send command sequences that
direct the rovers’ operations, receive telemetry
information, and download the data and images
generated by the rovers’ scientific instruments
and cameras. Scientists and researchers working
at JPL and its partner institutions analyze the
downloaded data and images and plan the rovers’
operations for the next day. Each rover has its
own team supporting it, although some people
move between teams. Most people work on Mars
time (a Martian day, or sol, is roughly 40 minutes
longer than an Earth day), but each person can
have different roles at different times of the day.
Although the mission managers, engineers, sci-
entists, and researchers have different roles and
tasks, CIP provides tools and functions that sup-
port all sets of users.

Figure 2 shows how the CIP client application
assists the rover teams with their daily tasks by
consolidating several useful tools into a single
consistent and intuitive user interface. CIP shows
the current time in Mars and Earth time zones, and
it displays both staff and event schedules. Users
can browse the data repositories and view the
downloaded data and images. They can also send
and receive broadcast messages.

Schedule Viewer
Mission personnel often refer to CIP’s staff and
event schedules, especially if they work on Mars
time. The schedule viewer tool displays the dura-
tions of events and staff role assignments as hori-
zontal time lines, and it can show multiple time
scales for Mars and Earth time zones. Each rover
is in a separate Mars time zone, and people work-
ing in various countries use different Earth time
zones. The tool tells its users when events are due
to occur, and it indicates who is working when and
where, and what roles they need to fill that day.
The schedules help people adhere to Mars time: the
extra 40 minutes means that, relative to Earth
time, regularly scheduled events drift later from
day to day. CIP keeps the schedules in a database
in the data repository tier.

Event Horizon
Users can place scheduled events into the event
horizon tool, which then displays a running count-
down of the time left until the start of the event.
Event table rows change colors to warn of impend-
ing start times. This tool is useful for all mission

personnel; it helps ensure that people show up to
meetings on time, or that they’re prepared for
important events such as the next command
sequence uplink to a rover.

IEEE INTERNET COMPUTING www.computer.org/internet/ JANUARY • FEBRUARY 2005 21

Web Service Conversation Modeling

Figure 1. Artist’s depiction of a rover working on Mars. Various
scientific instruments are deployed on the front articulated arm and
on top of the main mast that rises above the solar panels.The rover
also carries several cameras.The smaller mast is the low-gain
antenna, and the high-gain antenna is the circular disk at the right.
(Image courtesy of NASA and JPL.)

Figure 2. A screen shot of the CIP client application interface. The
broadcast announcements, clock, event horizon, and schedule viewer
tools are currently visible. The tool tabs provide access to the time
converter and data navigator tools.

Broadcast messages

Clocks

Tool tabs

Schedule
viewer

Event horizon

Data Navigator
The DSN sends the downloaded data and images
to JPL, which stores them in mission file servers
under a hierarchical Unix directory structure. Mis-
sion engineers can do further processing of the
data and image files, also known as data products,
such as image color correction and assembling
three-dimensional pictures.

NASA scientists and researchers use CIP’s data
navigator tools to access the mission file servers.
CIP transports data and images securely over the
Internet using Web services and the HTTPS proto-
col. As Figure 3 shows, one tool enables users to
navigate the Unix directories, and another tool
organizes the data products by rover, sol, and
instrument for users to browse and access.

CIP’s data repository tier generates metadata

for the data products, which it stores in a database.
Example metadata fields include which rover and
which instrument or camera created the product
and during which sol. Based on this metadata, the
data navigator tools automatically classify and
organize the data products. Whenever a user wants
to view a data product, the classification enables
CIP to determine which viewer to bring up. Still
other data navigator tools let users search for data
products according to metadata field values.

Clocks
“What time is it?” is a key question for everyone
working on the MER mission. Not only does the
mission run on Mars time, but the teams work in
two Martian time zones and various Earth time
zones. To contend with this issue, the CIP client
application displays clocks that show Mars and
Earth times in user-chosen time zones.

Broadcast Announcements
The broadcast announcements tool lets CIP users
send messages to other users — typically,
announcements about the availability of new data
products such as a newly created three-dimen-
sional image. CIP archives all the broadcast mes-
sages into a database in the data repository tier,
which users can browse to review past messages
and retrieve messages they might have missed
while they were away from CIP.

CIP Architecture
Figure 4 shows CIP’s SOA. Partitioning the software
into client, middleware, and data repository tiers
balances and distributes the computational
resources, and enables CIP to meet its goals of scal-
ability, reliability, extensibility, and security. Its
middleware automatically replicates and pools its
service components to handle peak loads, and these
components have automatic error recovery to
enhance overall system reliability. The architecture
is based on components that are straightforward to
replace or add new ones to. CIP provides security
at various levels, such as encrypted data transmis-
sions and user authentication and authorization.

Client Tier
Users run the Java-based CIP client application on
both their desktop and laptop computers. We
designed CIP to be a thick-client application that
can run by itself, as opposed to a thin-client appli-
cation that must run within a Web browser. The
client contacts the middleware over the Internet

22 JANUARY • FEBRUARY 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Scientific Data Collaboration

Figure 3. Screen shots of the various data navigator tools. Users can
navigate the mission file servers via the Unix file directory structure,
or they can browse the data products organized by sol and rover
instrument.Various report and image viewers display file contents.
(Images courtesy of NASA and JPL.)

Navigate by
directories and files

Navigate by
sol/instrument/
data product

Image viewer

Figure 4. Overview of the CIP architecture.The service-oriented
architecture is based on Web services and J2EE, and consists of client,
middleware, and data repository tiers.The middleware, database, and
file servers are located securely behind the mission firewall. Clients
access the CIP middleware over the Internet via Web services.

Client (outside)

CIP application
Java

Client (inside)

CIP application
Java

PC, Mac, Solaris
Linux, MERBoard

Solaris, Linux

Fi
re

w
al

l

CIP servers

CIP middleware CIP data management system
Application server

Weblogic

Web
services EJBs

CIP
storage

Meta
database

Oracle

CIP data acquisition

MER mission data servers

BA C

Monitor Loader

only when it needs to request a service, such as
when a user clicks a button. It polls the middleware
periodically for the current time and for any new
broadcast messages. We implemented the client
application using the Java platform with graphi-
cal user interface components from its Java Foun-
dation Classes (“Swing”).

Figure 5 shows our component-based approach
for the client tier. Each client tool is a CIP compo-
nent object. A service manager object supports one
or more component objects, and it makes calls into
the Web services client stub that connects to a par-
ticular remote middleware service — the clock
components, for example, use the time service
manager object, whose client stub connects to the
middleware’s time service.

Middleware Tier
The CIP middleware runs on a server at JPL and
communicates over the Internet with all actively
running client applications. The clients may simul-
taneously request services, so the middleware han-
dles the load by replicating, pooling, and caching
its service components.

We designed the middleware using SOA prin-
ciples and two industry standards: Java 2 Enter-
prise Edition (J2EE; http://java.sun.com/j2ee/) and
Web services (www.w3.org/2002/ws/). At runtime,
a commercial off-the-shelf application server,
WebLogic from BEA Systems (www.bea.com/
framework.jsp?CNT=index.htm&FP=/content/prod
ucts/server/), manages the J2EE-based components
that we developed called Enterprise JavaBeans (EJB).

The client applications request services from
the middleware, which returns a response to each
request. These services include

• the user management service to process user
logins and logouts and to maintain user ses-
sions;

• the time service to provide Mars and Earth
times in various time zones;

• the metadata query service to fetch metadata
from the database;

• the schedule query service to fetch schedules
from the database;

• the file streamer service to download and
upload files; and

• the message service for asynchronous notifica-
tion and broadcast messages.

Figure 6 shows how one or more service
provider EJBs, which are stateless session beans,

represent each service. Each bean has public meth-
ods, or procedures, that client applications invoke
remotely over the Internet to request services. The
application server maintains an instance pool of
these stateless beans; specifically, it creates or
destroys these instances in response to the request
load, which makes CIP scalable. As users make
more requests, the application server automatical-
ly replicates more service providers to handle them.

Several of the middleware services create data
beans, which are stateful session EJBs. Because
these beans maintain state information, the appli-

IEEE INTERNET COMPUTING www.computer.org/internet/ JANUARY • FEBRUARY 2005 23

Web Service Conversation Modeling

Figure 5. CIP client application’s component-based architecture.A
service manager object supports one or more client component
objects, and it makes calls into the Web services client stub that
connects to a particular remote middleware service.

CIP
component

CIP
component

CIP
component

CIP
component

Service
manager

Service
manager

Service
manager

Web
service

client stub

Web
service

client stub

Web
service

client stub

CIP client Firewall CIP
server

HTTPS

HTTPS

HTTPS

Figure 6.Web services and the service provider EJBs.A service
provider, implemented as a stateless session bean, represents each
middleware service.To handle heavy service request loads, the
application server replicates and pools instances of the service
provider bean. For security, all SOAP transmissions are encrypted
with the HTTPS protocol.

Application
Java

Web
service

client stub

Application
Java

Web
service

client stub

Application
C++

Web
service

client stub

Service provider
Remote stateless

session EJB

SOAP
processor

Service provider
Remote stateless

session EJB

SOAP
processor

WebLogic application server

Firewall

HTTPS

HTTPS

HTTPS

HTTPS

24 JANUARY • FEBRUARY 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Scientific Data Collaboration

cation server caches them in memory. The meta-
data and schedule query services, for example, cre-
ate data beans that use Java Database Connectiv-
ity (JDBC) calls to query the database repositories
(http://java.sun.com/products/jdbc/). Each data
bean keeps a reference to the returned query
results, so by taking advantage of the application
server’s memory cache, the query services greatly
improve their performance for repeated requests
for the same data. If the data beans are already in
the cache, the service doesn’t need to make the
more time-consuming database queries.

A key middleware innovation is our use of Web
services. As shown in Figures 5 and 6, client appli-
cations use Web services to communicate with the
remote service provider EJBs. Each client service
manager object has a Web services client stub that
acts as a proxy for the remote service provider bean.

We developed each service as a collection of
public methods that a client application can invoke
remotely. When a client application requests the
current Mars time, for example, the time service
manager makes a local call to the client stub’s get-
MarsTime method. The stub converts the call to a
service request in the form of a text document
encoded in the XML-based SOAP protocol, as
defined by the Web services standard. The stub
then sends the document over the Internet to the
middleware’s time service using the encrypted
HTTPS protocol. The time service’s SOAP proces-
sor decrypts the request and invokes the time ser-
vice provider bean’s public getMarsTime method.
The response returns similarly across the Internet
to the requesting client application as an encrypt-
ed SOAP document. The client stub then decrypts
the response and converts it to Java objects for the
client application.

Therefore, client applications make local
method calls to client stubs and get results back
from them. Web services handle all the details for
connecting to the remote middleware service,
encryption and decryption, and requests and
responses sent across the Internet.

Organizing the middleware as a collection of
loosely coupled services makes CIP extremely
extensible: it is easy to plug and play new services
and replace or remove obsolete ones. The applica-
tion server enhances reliability by monitoring ser-
vice operation and automatically doing any nec-
essary retries and error recoveries.

The middleware logs every activity, including
user requests. For each request, the log entry con-
tains a timestamp, the username, the name of the

called method, details about the request, and key
information about the results. We can do data min-
ing in these logs afterwards to compute various sta-
tistics, such as how frequently users accessed certain
types of schedules, and to deduce usage patterns,
such as how users search for data products. This
helps us fine-tune the middleware’s operations.

We developed a separate client-side utility pro-
gram to constantly monitor the middleware’s sta-
tus and to report statistics, such as memory usage
and response times, graphically. Knowing the serv-
er’s health at all times enables the system operators
to correct problems before they became serious.

Before deploying the CIP middleware for oper-
ation, we put it through intensive stress testing. We
developed a stand-alone interactive utility to per-
form the stress testing by simulating any number
of users performing various client functions, such
as accessing schedules or downloading files. This
testing pointed out performance bottlenecks and
helped us determine the load CIP could handle. We
can increase the load capacity by adding more
server hardware, but throughput is limited by net-
work latencies.

Dynamic reconfiguration allows CIP to stay up
and running for long periods (more than 77 days
at a time) before scheduled server maintenance
shutdowns. We designed the individual middle-
ware services to be hot redeployable, meaning we
can restart a service while the rest of the middle-
ware (and CIP as a whole) continues to run. To
reconfigure a service, a system administrator first
edits the service’s configuration file (to change the
one-way light time, for example, which is the time
it takes a signal to travel from Earth to Mars) and
then redeploys the service. When the service
restarts, it reads in its new configuration. Rede-
ploying a service typically takes a few seconds,
and users rarely notice any interruptions.

CIP security is a combination of user manage-
ment and data encryption. The CIP middleware
requires each user to log in with a username and a
password. Each user has pre-assigned privileges
that grants or forbids access to certain data or
images. Digital certificates from Verisign help
encrypt all data traffic between the middleware and
the users’ client applications (www.verisign.com).

Asynchronous Messaging
CIP has two types of asynchronous messages:

• CIP’s data repository tier sends notification
messages to the middleware and to users when-

ever new data and image files are available.
• Users can send a broadcast messages to other

CIP users to inform them, for example, of a
just-completed analysis of an image file.

To implement asynchronous messages, the CIP
middleware uses the Java Message Service (JMS;
http://java.sun.com/products/jms/), which follows
a publish-subscribe model. JMS uses objects called
topics to represent different types of messages;
message consumers, such as a CIP client applica-
tion, can subscribe to (register interest in) one or
more topics. Whenever a message producer, such
as another CIP client application or some other CIP
component, publishes (sends) a message to that
topic, JMS delivers the message to all the message
consumers that subscribe to that topic.

Users interested in panoramic camera images,
for example, subscribe to the pancam images topic,
and whenever the data repository tier detects a
new panoramic camera image, it publishes a mes-
sage to that topic. The interested users receive the
messages via Web services the next time their
client applications poll the middleware for mes-
sages. CIP messaging is asynchronous, meaning
message queuing and delivery occur in parallel
with all other operations.

A message-driven EJB subscribes to the broad-
cast messages topic. It receives and archives all the
broadcast messages in a database so that users can
browse the archived messages to review them and
to pick up any missed messages.

Data Repository Tier
Figure 7 illustrates the data repository tier, which
encompasses CIP’s Oracle databases and the MER
mission file system, both of which run on separate
servers at JPL.

The file monitor constantly watches the logs
generated by the Unix utility program nfslogd,
which writes a log entry every time a file is creat-
ed, read, moved, or updated (see http://mirrors.
ccs.neu.edu/cgi-bin/unixhelp/man-cgi?nfslogd+1/).
The file monitor has a configuration file with reg-
ular expressions representing the file paths relevant
to CIP, and it filters out any files whose paths don’t
match these expressions.

Unlike the file monitor, the file detector uses
the Unix utility program find to walk the mission
file system’s directory tree in search of any rele-
vant newly created or updated files (see http://
mirrors.ccs.neu.edu/cgi-bin/unixhelp/man-cgi?
find+1). The file detector walks the directories once

during each run and acts as a backup for the file
monitor whenever nfslogd isn’t running.

As soon as either file monitor or file detector
encounters a relevant new or updated file, it sends
a message to the data loader, which generates
metadata for that file. Using regular expressions
from a configuration file, the loader derives meta-
data field values from the file path itself. The
loader also obtains information from the Unix file
system; for some types of files, it reads the file
header to get additional metadata field values.
Example metadata fields include the file name, its
creation date and time, the rover the file belongs
to, the rover’s location, which rover instrument
generated the file data, during which sol, and so
on. The loader then inserts or updates the metada-
ta in the database.

Following industry standards and using proven
commercial software for the infrastructure rea-

sonably assured us that the CIP’s underlying
“plumbing” would work. The real challenges of
enterprise development aren’t in the coding, but in
integrating the various components.4

Ever-changing requirements before deployment
coupled with ever-changing operational parame-
ters after deployment made it crucial to develop
services that were plug-and-play, mutually inde-
pendent, and dynamically reconfigurable. We also
found that both user and stress testing were criti-
cal. JPL ran a series of operational readiness tests
in which teams of mission managers, engineers,
and scientists tested software systems such as CIP
under realistic conditions. We found and fixed
many bugs during these tests and gained invalu-
able user feedback. Our stress testing helped us dis-

IEEE INTERNET COMPUTING www.computer.org/internet/ JANUARY • FEBRUARY 2005 25

Web Service Conversation Modeling

Figure 7.The data repository tier.The file monitor or detector
monitors the mission file servers.When either one detects a newly
created or updated file, it sends a message to the data loader, which
then generates metadata for that file.

Messages

Messages

Messages

Metadata

Find

Monitor

Log entriesLog entries

File
monitor

File
detector

Data
loader

nfslogd

Mission
file system

Metadata
database

JMS monitor topic

cover the limits of our software before the users
did. Real-time server monitoring and logging
helped the system operators keep track of what
was going on and headed off any potential prob-
lems. The middleware logs provided ways to ana-
lyze usage patterns and fine-tune the middleware.

We were initially concerned that Web services
would cause performance problems, because XML
documents for service requests and responses
involved so much data conversion, encryption, and
decryption. Yet, CIP achieves a data throughput rate
of 100-Mbytes per hour between a client applica-
tion and the middleware, which is usually sufficient.

The Mars rovers continue to operate way beyond
their original 90-sol mission; through over 300 sols,
CIP has maintained a 99.9 percent uptime record.

CIP’s success with the MER mission encourages
us to make improvements to the software and add
new features for user collaboration and interap-
plication data exchange. NASA Ames and JPL are
currently designing a new version of CIP for pos-
sible use by later missions, such as the Mars
Phoenix mission that will launch in August 2007
and land the following May (see http://mars.
jpl.nasa.gov/missions/future/phoenix.html).

NASA computer scientists are currently inves-
tigating ways to define common enterprise soft-
ware that multiple NASA centers can use for future
missions. SOA and other industry standards will
play important roles in creating a multicenter, mul-
timission infrastructure that will let reusable soft-
ware components from different missions commu-
nicate with each other and exchange data. Results
from these investigations will become increasing-
ly evident in upcoming NASA missions.

Acknowledgments
Funding for CIP's development came from the Computing, Net-

working, and Information Systems Project and the Intelligent

Systems Project within NASA's Computing, Information, and

Communications Technology Program. In addition to the

authors, other CIP project members included Roy Britten, Louise

Chan, Sanjay Desai, Matt D’Ortenzio, Glen Elliot, Robert Fil-

man, Dennis Heher, Kim Hubbard, Sandra Johan, Leslie Keely,

Carson Little, Quit Nguyen, Tarang Patel, John Schreiner, Jeff

Shapiro, Elias Sinderson, and Robert Wing. This project would

not have been possible without the support, assistance, and col-

laboration of JPL and the MER team.

References

1. “Mars Exploration Rover,” NASA fact sheet, Jet Propulsion

Laboratory, Oct. 2004; www.jpl.nasa.gov/news/fact_sheets/

mars03rovers.pdf.

2. “Opportunity Rover Finds Strong Evidence Meridiani

Planum Was Wet,” NASA press release, 2 Mar. 2004; http://

marsrovers.jpl.nasa.gov/newsroom/pressreleases/200403

02a.html.

3. “Spirit Finds Multi-Layer Hints of Past Water at Mars’

Gusev Site,” NASA press release, 1 Apr. 2004; http://

marsrovers.jpl.nasa.gov/newsroom/pressreleases/200404

01a.html.

4. R. Mak, “Enterprise Development for Mars and other Alien

Places,” keynote address presented at BEA eWorld 2004

Conference, May 2004; www.apropos-logic.com/BEA

_eWorld_keynote_address.pdf.

Ronald Mak is a project scientist in the University Affiliated

Research Center (UARC), which is a partnership between

the University of California at Santa Cruz and the NASA

Ames Research Center in Moffett Field. He worked on the

CIP development team as the architect and lead developer

of its middleware. Prior to working at NASA Ames, Mak

had more than 15 years of industry experience developing

enterprise software systems. He has a BS in the mathemat-

ical sciences and an MS in computer science from Stanford

University. Contact him at rmak@mail.arc.nasa.gov or at

ron@apropos-logic.com.

Joan Walton is group leader of the Information Design Group

in the Computational Sciences Division at the NASA Ames

Research Center. In her role as a CIP project manager, she

led a team of 12 software developers and was responsible

for guiding the project’s technical direction, tracking its

schedule, meeting milestones, and interacting with MER

mission management to develop requirements and meet

JPL deployment criteria. Walton has a BA in physics from

Swarthmore College and an MS in medical information sci-

ences from Stanford University. Contact her at jdwalton@

mail.arc.nasa.gov.

26 JANUARY • FEBRUARY 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Scientific Data Collaboration

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

