
2023

Team: SQL Weavers

Course: DATA 225

12/12/2023

Bike Store Management System- TerraBikes

Page | 1

Contents
1. Introduction ... 2

2. Data Sources: ... 2

3. Application Design ... 2

3.1. Operation Module .. 3

3.2. Analytical Module: .. 3

4. Database Design .. 4

5. Working of the Operational module ... 5

6. Specifications and Usability of Operational Module .. 6

6.1. Login page: .. 6

6.2. Forgot Password: .. 6

6.3. Customer Portal: ... 7

6.3.1. Track Orders: .. 8

6.3.2. Orders: .. 8

6.3.3. Feedback: .. 9

6.3.4. Greviances: ... 9

6.4. Employee Portal: .. 10

6.4.1. Orders: .. 11

6.4.2. Inventory: ... 12

6.4.3. Greviances: ... 14

6.4.4. Customers: .. 15

6.4.5. New Order (Walk-In): ... 15

6.5. Manager Portal: .. 16

7. Summary for Operational Module .. 18

8. Working of Analytical Module ... 19

9. Specifications and Usability of Analytical Module .. 19

9.1. Sales Dashboard ... 19

9.2. Employee Dashboard ... 20

10. Summary of Analytical Module ... 21

11. Technical Aspects ... 22

12. Database Technical Details .. 22

12.1. DB Objects .. 22

12.2. ETL .. 23

12.3. Queries (Operation DB) ... 24

12.4. Queries (Analytical DB) .. 26

Page | 2

1. Introduction

The Bike Store Management System is a comprehensive solution designed to meticulously catalog and
manage day-to-day operations and sales activities within a dynamic cycling retail environment. In
response to the growing demand for efficient store management and the need to analyze sales trends
across various outlets, we have crafted a dual-functional system that seamlessly integrates
operational and analytical databases.

The operational database serves as the backbone of the system, dedicated to recording and tracking
the intricacies of daily transactions, inventory updates, and customer interactions. This functionality
ensures a streamlined process for managing orders, stock levels, and overall store operations. With a
focus on real-time data entry and retrieval, the operational database empowers store staff to
efficiently navigate the daily challenges of running a bike store.

On the other hand, our analytical database plays a pivotal role in unraveling the broader narrative of
the business. By harnessing the power of historical sales data, this component of the system enables
stakeholders, particularly managers, to gain profound insights into sales trends over the years and
across different store locations. The analytical database becomes a strategic tool for decision-making,
providing a platform for managers to assess employee performance, identify top-selling products, and
formulate informed strategies for business growth.

In essence, the Bike Store Management System is a sophisticated tandem of operational efficiency
and analytical prowess, designed to elevate the management and performance evaluation processes
within the dynamic realm of bicycle retail.

2. Data Sources:

Mockaroo https://www.mockaroo.com
US Cities Name https://simplemaps.com/data/us-cities
Kaggle https://www.kaggle.com/datasets/dillonmyrick/bike-store-sample-

database

3. Application Design

The tools used during development includes Python, MySQL Workbench, PyQt Designer, ERD Plus and
VSCode. It requires additional packages to be installed:

• Pandas
• Numpy
• Matplotlib
• PyQt5 and PyQt5-Tools
• Seaborn
• MySQL Connector for Python
• SMTPLIB

The application consists of two main modules: Operation Module and Analytical Module.

https://www.mockaroo.com/
https://simplemaps.com/data/us-cities
https://www.kaggle.com/datasets/dillonmyrick/bike-store-sample-database
https://www.kaggle.com/datasets/dillonmyrick/bike-store-sample-database

Page | 3

3.1. Operation Module

Customers engaging with the Bike Store Operational Database can seamlessly register, log in,
and initiate various transactions to enhance their shopping experience. Within this segment
of the system, customers have the capability to place new orders, submit feedback, and raise
any concerns through a streamlined complaints process. When submitting a complaint,
customers are prompted to provide essential details such as the nature of the issue, the
product involved, and the relevant order information. To facilitate efficient tracking, the
system meticulously validates these details, generating a unique order_ID to distinctly identify
and monitor each transaction and complaint.

Simultaneously, employees harness the power of the operational database to streamline their
responsibilities. They can easily access information on the number of orders they've handled,
assist new customer registrations, collect, and analyze customer feedback, and provide
resolutions to any raised complaints. Furthermore, employees are empowered to initiate the
process of ordering new inventory for the store, ensuring that the product lineup remains
current and meets customer demands.

In the broader managerial context, the operational database serves as a comprehensive tool
for overseeing the store's functionality. Managers gain insights into the onboarding process
for new employees, monitoring their performance into the system. Additionally, the database
offers a panoramic view of employee performance metrics, enabling managers to make
informed decisions and implement strategies for ongoing improvement.

In essence, the Bike Store Operational Database stands as a user-centric hub, where
customers, employees, and managers converge to optimize the entire spectrum of
operations, from order placement to resolution management and strategic decision-making.

3.2. Analytical Module:

Within the Bike Store Analytical Database module, our focus revolves around leveraging the
wealth of data accumulated from our operational database alongside external sources. This
comprehensive analysis yields an insightful dashboard that delves into the intricacies of sales
and operational performance. The dashboard provides a panoramic view of the store's
landscape, encompassing diverse metrics such as sales performance, employee efficiency,
and regional product dynamics.

Users with managerial roles have exclusive access to this analytical dashboard, where they
can explore nuanced details of the store's performance. The system showcases
comprehensive sales performance metrics, offering insights into top-selling products for each
region. Users can drill down into historical data for all years, specific years, six-month intervals,
quarters, or the last month, enabling a granular examination of sales trends over time.

Furthermore, the dashboard facilitates an in-depth analysis of order-related metrics, including
order counts by status, the year-wise spike of bike quantities by category, and overall order
trends by year and month. For a regional perspective, users can assess total orders by region,
identifying patterns and optimizing strategies based on regional demand.

Page | 4

The managerial privilege extends to a specialized employee performance dashboard,
providing key metrics for assessing workforce effectiveness. Managers can discern the top-
performing regions in terms of sales, identify the highest sales contributors by region, and
recognize the top 10 employees who have made significant sales contributions. This analytical
capability empowers managers to make data-driven decisions, strategize for growth, and
optimize operational efficiency within the dynamic landscape of the bike store.

4. Database Design

Throughout the conceptualization and design phases of the Bike Store Management System, a
meticulous focus was placed on crafting a database structure comprised of normalized tables,
upholding the highest standards of data integrity. The system's architecture was strategically tailored
to ensure that each table adhered to stringent normalization principles, promoting efficient data
storage and the elimination of redundancies. This deliberate approach resulted in a system
characterized by its simplicity and effectiveness, facilitating a seamless process for creating and
managing products within the store.

FIGURE 1: ER DIAGRAM
Normalization played a pivotal role in enhancing the efficiency of the database, optimizing the storage
of information while systematically reducing redundancy. By eliminating unnecessary duplications and
organizing data logically, the design achieved a lightweight profile that not only streamlined day-to-
day operations but also facilitated ease of maintenance and updates. This commitment to
normalization has contributed to the creation of a robust and reliable product, providing the Bike
Store Management System with a solid foundation for scalability and adaptability as the store evolves
over time.

Page | 5

FIGURE 2: RELATIONAL SCHEMA

FIGURE 3: STAR SCHEMA

5. Working of the Operational module

The operational structure of our bike store centers around three primary roles: the Customer,
Employee, and Manager. Each role carries distinct responsibilities and functionalities. For instance,
the Customer role encompasses the ability to place orders, log in for personalized services, and submit
grievances.

On the other hand, the Employee role involves multifaceted tasks, including logging in, assisting in the
registration of new walk-in customers, managing, and tracking orders while adjusting their status,
providing discounts, overseeing inventory management by monitoring in-store stock levels, and

Page | 6

initiating orders for replenishment from the warehouse. Employees are also responsible for
addressing and tracking customer grievances, with the authority to update their status as 'rejected' or
'resolved.'

The Manager, as a key figure in our store's operation, has the capability to monitor new employee
onboarding and assess employee performance. Additionally, the manager plays a crucial role in
analyzing and keeping track of sales trends over the years across all regions, contributing to strategic
decision-making and business growth. This comprehensive structure ensures efficient and seamless
operations within our bike store, catering to the diverse needs of customers, empowering employees
with essential tools, and enabling managerial oversight for informed decision-making.

6. Specifications and Usability of Operational Module

6.1. Login page:

FIGURE 4: APP LANDING PAGE

6.2. Forgot Password:
This screen supports the verification email functionality for user verification.

FIGURE 5: RESET PASSWORD PAGE

• The application has login page from where we can login
with the username and password. We can create a user
account if you are new user.

• There are three roles:
o Customer - Customer can generate new orders,

raise grievances, and give product feedback.
o Employee - assisting in the registration of new

walk-in customers, managing, and tracking
orders while adjusting their status, providing
discounts, overseeing inventory management
by monitoring in-store stock levels, and
initiating orders for replenishment from the
warehouse.

o Manager - Manager is also employee, so he/she
is registered within employee.

Files:
• BikeStoreMainWin.py
• BikeStoreMainWin_ui.py
• BikeStoreMainWin.ui

• For any user three options appear on the portal.
I.e. login, forget password and sign up.

• Out of which one of them is “Forgot Password”.
• This option allows the user to retrieve the

forgotten password.
• The user is required to enter both username and

email id where they can receive a validation
code.

• After receiving a validation code, they can reset
their password.

Files:
• BikeStoreResetPwdDialog.py
• BikeStoreResetPwdDialog_ui.py
• BikeStoreResetPwdDialog.ui

Page | 7

FIGURE 6: EMAIL NOTIFICATION

FIGURE 6: SUCCESSFUL VERIFICATION POP-UP FIGURE 7: PASSWORD RESET CONFIRMATION

6.3. Customer Portal:

(use username as jcaughan7 and password as welcome1234)
• The customer can perform four operations:
• Track the orders that customer have placed in past and check new orders
• Create new order
• Give feedback for orders they have placed
• Submit complaint/Grievances for order they have placed

rmak
Highlight

rmak
Highlight

Page | 8

6.3.1. Track Orders:

Track the orders: From orders page customer can track the orders placed in past and
new orders. From orders page and create order page customer can place new order.

6.3.2. Orders:
Create New Order: From create order page, customer can place new order, at one time customer can
add 5 different products though for different products quantity can be any.

FIGURE 8: STEP 1: ADD NEW PRODUCTS

FIGURE 10: STEP 2: ADDED 5 DIFFERENT PRODUCTS FIGURE 9: STEP 3: ORDER PLACED SUCCESSFULLY

Page | 9

6.3.3. Feedback:
Give feedback for orders they have placed: From Customer Feedback page customer
can give rating for orders they placed. And these orders are classified as “online direct”
or “in store”. When orders are placed in store the rating or feedback that you provide is
reflected and updated as employee feedback as well.

Note: From here the employee rating is updated.

6.3.4. Grievances:
Submit complaint/Grievances for order they have placed:

• This is the page from where
customer can choose for which order
they want to give feedback

• For each order we can see that
order_id is different and that helps in
tracking different orders

Page | 10

FIGURE 10: CHOOSE ORDER FOR WHICH COMPLAINT HAS TO BE RAISED

FIGURE 11: SELECT ISSUE CATEGORY AND GIVE DETAILS FIGURE 12: SUBMISSION OF COMPLAINT

FIGURE 13: STATUS OF COMPLAINT UPDATED AS OPEN

6.4. Employee Portal:
Successfully logged in as an employee:

• This is the page from where customer can
raise grievances or complaints for any
order

• Customer can choose a order they want to
register complaint for and select issue
category.

• And then they provide details for that issue
and submit complaint.

• After that when a customer submits a new
complaint, its status is updated as open.
And its later change when employee work
on it.

Page | 11

(use username as HayyimM3 and password as welcome1234)

6.4.1. Orders:

Track the orders: From orders page employee can track the orders placed in past and
new orders of customer. From orders employee can change the status of order to “ship
order”, “order delay”, “order delivered”. Here in following steps I have shown how we
change order status from new to shipped. Likewise we can change the status to delay or
delivered.

Note: For new order we can change status to delay and shipped. For shipped order we
can change status to delivered. But we can’t mark shipped order as delayed.

• The employee can perform five operations:
• Track the orders that customer have placed

in past, check new orders, and change order
status

• Inventory Management for the store
• Provide resolution of grievances raised by

customers
• Can view all customers and can either

disable or delete very old customers
• Registration of new walk-in customer, and

help them in placing new order

rmak
Highlight

rmak
Highlight

Page | 12

FIGURE 14: HERE YOU CAN SEE THAT ORDER STATUS FOR ORDER
ID 690 IS NEW

FIGURE 15: HERE STATUS IS UPDATED

FIGURE 16: HERE NOW ORDER STATUS IS CHANGED TO SHIPPED

6.4.2. Inventory:

Inventory Management for the store: In inventory page employee can track stock of
products available in store. And in store if stock for product is low then employee can
search from all the warehouses which have that same product and can order the product.

Page | 13

FIGURE 17: HERE WE WANT TO KEEP STOCK FOR THIS
PRODUCT ID FG2023PUCE

FIGURE 18: HERE WE SEE THAT QUANTITY FOR THIS
PRODUCT IS 17

FIGURE 19: HERE WE HAVE ALL THE WAREHOUSES WHICH
HOLD THE STOCK OF THIS ITEM

FIGURE 20: INVENTORY ORDERED

FIGURE 21: FROM HERE EMPLOYEE CAN TRACK INVENTORY
ORDERED FROM A WAREHOUSE AND ALSO CHANGE THE
STATUS OF ORDERED INVENTORY

FIGURE 22: STATUS OF ORDERED INVENTORY IS CHANGED
TO RECEIVED

Page | 14

FIGURE 23: HERE WE CAN SEE THAT NOW STOCK IS
UPDATED FROM 17 TO 55

6.4.3. Grievances:
Provide resolution of grievances raised by customers: In grievances page, an employee can provide
resolution to the complaints which are still open.

FIGURE 24: THERE IS ONE COMPLAINT WHICH IS STILL
OPEN

FIGURE 25: AN EMPLOYEE HERE PROVIDE RESOLUTION
COMMENTS AND WILL MARK THE STATUS

FIGURE 26: AND AFTER EMPLOYEE PROVIDES A
COMMENT, STATUS IS UPDATED AS CLOSED

Page | 15

6.4.4. Customers:

Can view all customers and can either disable or delete very old customers: From this page
we track all the customers and see the orders they have placed over years. And if a customer
has not placed order from very long time, we can either disable them or delete them.

FIGURE 27: HERE WE CAN SEARCH CUSTOMER EITHER AS
CUSTOMER ID OR CUSTOMER NAME. OR JUST CLICK ON SEARCH
AND SEE ALL CUSTOMERS

FIGURE 28: WE CAN SEE ALL THE ORDERS PLACED BY A
CUSTOMER

FIGURE 29: EMPLOYEE CAN DECIDE WHICH CUSTOMER THEY
WANT TO DISABLE OR DELETE

6.4.5. New Order (Walk-In):

Registration of new walk-in customer and help them in placing new order: From this page an
employee can help new customers with placing new orders and help them sign up. An
employee will create an account for them, provide them with customer_id and password
which customer can change later.

Page | 16

AN EMPLOYEE WILL ENTER ALL THE CUSTOMER DETAILS FOR
NEW CUSTOMER

AN EMPLOYEE WILL ENTER ALL THE CUSTOMER DETAILS FOR
NEW CUSTOMER

CUSTOMER CREATED SUCCESSFULLY ORDER CREATED SUCCESSFULLY

6.5. Manager Portal:
Successfully logged in as a manager: (use username as HyDu19 and password as welcome1234)

• Manager can perform 3 operations:
• Can see all employee that have worked across all

the stores
• Can update current employee information and

can create new employee
• Have access for analytical dashboard to track

sales across all regions, employee performance

rmak
Highlight

rmak
Highlight

Page | 17

Can see all employee that have worked across all the stores: From here manager can see all the
employee which are working for different regions. Manager can see the status, end date and order
count for that employee. Manager can “update employee” information from this page or form “modify
employee” page.

Can update current employee information and can create new employee: From this page we can
either update information for current employee like I did in following steps by changing the leaves
taken, bonus and end date for an employee.

Page | 18

These are original employee details. And here I want to update the employee end date, bonus and rating.

Also, from this page we can create a new employee, for that we need to enter all the details of employee. Here
manager can create a temporary password for employee which they can change later.

7. Summary for Operational Module

Summary For Operational Module
The operational module of our Bike Store Management System is designed to facilitate seamless day-
to-day operations and enhance customer experience within the bike store. It encompasses three
primary roles: Customer, Employee, and Manager.

• Customer Operations:
o Login and Dashboard: Customers can log in to access a personalized dashboard. The

dashboard allows customers to track past and new orders, create new orders, provide
feedback, and submit complaints.

o Order Placement: Customers can place new orders by adding up to 5 different
products. The system generates a unique order_ID for efficient tracking.

o Feedback and Complaints: Customers can give feedback and ratings for orders,
influencing employee ratings. A streamlined process allows customers to submit
complaints, specifying the nature of the issue, product details, and order information.

Page | 19

• Employee Operations: Employees can track orders, change order statuses (e.g., ship, delay,
delivered), and manage inventory. Inventory management includes searching for products in
various warehouses and placing orders to replenish stock.

o Inventory Management: Employees can monitor and order inventory from different
warehouses to maintain optimal stock levels in the store.

o Grievance Resolution: Employees address and provide resolutions to customer
complaints, updating the status as 'resolved' or 'closed.'

o Customer Management: Employees can view all customers, track their orders over
the years, and disable or delete inactive customers.

o Customer Registration: Employees can assist new walk-in customers by registering
them in the system, providing a customer ID, and helping them place new orders.

• Manager Operations:
o Employee Management: Managers can view all employees across regions, track their

status, end dates, and order counts. Updating employee information and creating
new employees is possible from the manager's perspective.

o In essence, the operational module ensures efficient coordination among customers,
employees, and managers, optimizing order processes, inventory management, and
strategic decision-making within the bike store.

8. Working of Analytical Module

The Bike Store Management System is a tailored solution designed to streamline operations and
enhance manager oversight within our dynamic retail environment. Crafted with a focus on sales
trends and employee performance, the system caters to manager, offering unique functionalities to
optimize business processes.

• Sales Trends Overview: At the managerial level, our system provides a comprehensive "Sales
Trends Overview Dashboard." This dashboard empowers managers to gain insights into sales
trends across diverse regions over multiple years. Key performance indicators (KPIs) are
prominently featured, enabling a quick assessment of overall sales performance. The system
generates detailed analysis on regional sales, facilitating strategic decision-making.

• Employee Performance Tracking: The managerial privilege extends to a specialized employee
performance dashboard, providing key metrics for assessing workforce effectiveness.
Managers can recognize the top 10 employees who have made significant sales contributions.
This analytical capability empowers managers to make data-driven decisions, strategize for
growth, and optimize operational efficiency within the dynamic landscape of the bike store.

Furthermore, we can ROLL UP the results on a monthly, quarterly, and weekly basis depending on the
trend manager wants to check.
In essence, our Bike Store Management System is designed to empower managers with a holistic view
of sales trends and employee performance. The dual dashboards cater to the unique needs of
different managerial levels, ensuring seamless and effective management within the bike store.

9. Specifications and Usability of Analytical Module

9.1. Sales Dashboard

Page | 20

FIGURE 30: SALES DASHBOARD

• “Sales dashboard”: - This is Sales Dashboard page where manager views this page. It displays
the overall data in organized and graphical ways.

• Functionalities: - Manager can select a date range from and through to see the sales by Month-
Year. To display the sales data in Month-Year we need to use the concept of DRILL-UP.

• Manager can see total number of orders generated by a region and manager can also filter a
particular region as well.

• We can see the top 10 products that were sold in that year and region.
• You can also see how many orders are in which status.
• Also, you can analyse the year wise split of bike quantities by category.

Through radio buttons we can drill up or drill down over years to see the sales performance. And,
through region dropdown we can slice and dice for the region-specific sales trend.

9.2. Employee Dashboard

Page | 21

FIGURE 31: EMPLOYEE DASHBOARD

• “Employee dashboard”: - This is Employee Dashboard page where manager views can view
employee performance over years for different regions.

• Functionalities: - Manager can select a date range from and through to see the employee
performance by Month-Year. To display the employee data in Month-Year we need to use the
concept of DRILL-UP.

• Manager can see total number of orders generated by a region and manager can also filter a
particular region as well.

• You can also see orders and revenue generated by region.
• Manager can also see the average rating over years in different regions.
• We can see the top 10 employees for that region.
• manager can see over years how much revenue top 5 employees are generating.

10. Summary of Analytical Module

The Analytical Module of the Bike Store Management System offers a comprehensive and strategic
approach to overseeing the store's performance. It empowers managers with a holistic view of sales
trends and employee performance.

This module features a Sales Dashboard that provides insights into sales trends across different
regions over multiple years. Allowing managers to quickly assess overall sales performance. The
system generates detailed analyses on regional sales, facilitating strategic decision-making. Managers
can also track employee performance through a employee dashboard, recognizing the top
contributors and making data-driven decisions for growth and operational efficiency.

Furthermore, the system allows for rolling up results on a monthly, quarterly, and weekly basis,
providing flexibility in trend analysis based on manager’s preferences. In essence, the Analytical

Page | 22

Module serves as a valuable tool for managers, offering dual dashboards to optimize decision-making
processes and enhance overall management within the dynamic landscape of the bike store.

11. Technical Aspects

Following is the list of the files for this application.

S.No. File Name Type Comments
1 BikeStoreCustMainDialog.py Python Customer Portal Dialog
2 BikeStoreCustMainDialog.ui Qt5 UI File Customer Portal Dialog
3 BikeStoreCustMainDialog_ui.py Python Customer Portal Dialog
4 BikeStoreEmplMainDialog.py Python Employee Portal Dialog
5 BikeStoreEmplMainDialog.ui Qt5 UI File Employee Portal Dialog
6 BikeStoreEmplMainDialog_ui.py Python Employee Portal Dialog
7 BikeStoreMainWin.py Python Main Window (Login Page)
8 BikeStoreMainWin.ui Qt5 UI File Main Window (Login Page)
9 BikeStoreMainWin_ui.py Python Main Window (Login Page)
10 BikeStoreManagerDashDialog.py Python Manager Dashboard Dialog
11 BikeStoreManagerDashDialog.ui Qt5 UI File Manager Dashboard Dialog
12 BikeStoreManagerDashDialog_ui.py Python Manager Dashboard Dialog
13 BikeStoreManagerMainDialog.py Python Manager Portal Dialog
14 BikeStoreManagerMainDialog.ui Qt5 UI File Manager Portal Dialog
15 BikeStoreManagerMainDialog_ui.py Python Manager Portal Dialog
16 BikeStoreResetPwdDialog.py Python Reset Password Dialog
17 BikeStoreResetPwdDialog.ui Qt5 UI File Reset Password Dialog
18 BikeStoreResetPwdDialog_ui.py Python Reset Password Dialog
19 BikeStoreSignUpDialog.py Python Sign Up Dialog
20 BikeStoreSignUpDialog.ui Qt5 UI File Sign Up Dialog
21 BikeStoreSignUpDialog_ui.py Python Sign Up Dialog
22 BikeStoreUtils.py Python Utility File used in Application
23 TerraBikes.ipynb Jupyter

Notebook
Notebook used to Launch the
Application

24 resources.qrc Resource File QT Resources File
25 resources_rc.py Python QT Resources Python File
26 terrabikes.ini Config File Database Config File (Operational)
27 terrabikes_bi.ini Config File Database Config File (Analytical)
28 TerraBikes.py Python Alternate way to Launch
29 terrabikes.sql SQL Dump Operational DB Dump
30 terrabikes_bi.sql SQL Dump Analytical DB Dump

12. Database Technical Details

12.1. DB Objects

Database Type Object Type Name Usage
Operational Table Brand Employee Portal: Brand Details
Operational Table Category Employee Portal: Category Details
Operational Table Customer Customer Portal: Customer Details
Operational Table Employee Employee Portal: Employee Details
Operational Table Feedback Employee Portal: Feedback & Grievances

Customer Portal: Feedback & Grievances

Page | 23

Operational Table Manager Manager Portal: Manager Details
Operational Table Orders Customer Portal: Order Records
Operational Table Order_Details Customer Portal: Order Details
Operational Table Products Customer Portal: Product Details

Employee Portal: Product and Inventory
Details

Operational Table Regions Region Information
Operational Table Type User Type
Operational Table Users User Login Information
Operational Table Warehouse Employee Portal: Warehouse Details
Operational Table Warehouse_inventory Employee Portal: Warehouse Inventory
Operational Table Warehouse Supply Employee Portal: Warehouse Supply

Orders
Operational Function create_employee Employee Portal: Insert Employee Records
Operational Function gen_rand_empid Employee Portal: Generate Random

Employee ID
Operational Function InsertCustomerAndUser Employee Portal: Insert Customer and User

Details
Operational Function InsertFeedback Employee Portal: Insert Feedback
Operational Function InsertOrder Customer Portal: Insert Order Records
Operational Function InsertOrderDetails Customer Portal: Insert Order Detail

Records
Operational Function InsertWarehouseInventory Employee Portal: Insert Warehouse

Inventory
Operational Function InsertWarehouseSupply Employee Portal: Insert Warehouse Supply

Orders
Operational Function Update_employee Manager Portal: Update Employee Records
Operational Function UpdateProductInventory Employee Portal: Update Inventory Status
Analytical Procedure Refresh_dwh_prc Stored Procedure to Refresh Analytical DB

from Operation DB
Analytical Table Calendar Time Dimensions
Analytical Table Customer Customer Dimension Table
Analytical Table Employee Employee Dimension Table
Analytical Table Order_Details Order Dimension Table
Analytical Table Performance Employee Performance Fact Table
Analytical Table Product Product Dimension Table
Analytical Table Region Region Dimension Table
Analytical Table Sales Sales Fact Table
Analytical View Employee_sales_view View for Employee Dashboard

12.2. ETL

We created and generated the data from Mockaroo and combined the dataset from
Kaggle and transformed the generated data such that it is in accordance with the
application logic.

• Operational: Initial Data-load was done using Python and SQL Workbench.
The date columns of the database were formatted to YYYY-MM-DD to have
consistency in the entire application. Next, we concatenated the fields such as street
name, city, zipcode together to get the address field. Once all transformations are
done, we loaded the data to SQL workbench by directly querying the workbench as
below:

Table: Customer Query:
INSERT INTO Customer (customer_id, first_name,
last_name, email_id, contact, address,
creation_date, updated_date)
VALUES (1, 'Gibb', 'MacCumiskey',
'gmaccumiskey0@sphinn.com', '214-164-9758',
'008 Ilene Terrace, Corpus Christi, Texas 78426',
'2022-12-09', '2022-03-03');

Page | 24

• Analytical: We wrote a stored procedure to load data of operational database to analytical

database. The SP pulls the data from operational and loads the analytical db.
The stored procedure is as below:

CREATE DEFINER=`root`@`localhost` PROCEDURE `refresh_dwh_prc`(OUT o_status VARCHAR(20))
BEGIN
 SET FOREIGN_KEY_CHECKS = 0;
 TRUNCATE TABLE Sales;
 TRUNCATE TABLE Performance;
 TRUNCATE TABLE Customer;
 TRUNCATE TABLE Region;
 TRUNCATE TABLE Product;
 TRUNCATE TABLE Calendar;
 TRUNCATE TABLE Order_Details;
 TRUNCATE TABLE Employee;
 SET FOREIGN_KEY_CHECKS = 1;

 -- Load Products Table
 INSERT INTO Product(Product_Key, Product_ID, Price, discount_percent, Model_Year, Product_Name, Brand_Name,
Category_Name, Inventory_Status)
 SELECT NULL product_key, p.product_id, p.price, p.discount_percent, p.model_year, p.product_name,
b.brand_name,c.category_name, p.inventory_status FROM terrabikes.products p, terrabikes.brand b, terrabikes.category c
 WHERE b.brand_id = p.brand_id AND c.category_id = p.category_id;
 -- Load Calendar Table
 INSERT INTO calendar (Calendar_Key, Full_Date, Year, Month, Qtr, day_of_month, Week)
 SELECT DISTINCT NULL, ordered_date, YEAR(ordered_date), MONTH(ordered_date), QUARTER(ordered_date),
DAY(ordered_date), WEEK(ordered_date) FROM terrabikes.orders;
 -- Load Region Table
 INSERT INTO region(Region_Key, Region, State)
 SELECT DISTINCT NULL, region, state_name FROM terrabikes.regions;
 -- Load Employee Table
 INSERT INTO Employee(Employee_Key, Employee_ID, Employee_Name, Employee_Rating)
 SELECT NULL, employee_id, CONCAT(first_name, ' ', last_name) employee_name, emp_rating FROM
terrabikes.employee;
 -- Load Customer Table
 INSERT INTO Customer(Customer_Key, customer_id, Customer_Name)
 SELECT NULL, customer_id, CONCAT(first_name, ' ', last_name) customer_name FROM terrabikes.customer;
 -- Load Order Details Table
 INSERT INTO Order_Details(Order_Detail_Key, Order_Id, Order_Detail_ID, Order_Date, order_status, Issue_category,
Rating, status) SELECT NULL, o.order_id, od.order_detail_id, o.ordered_date, o.order_status, (SELECT f.grevience_category FROM
terrabikes.feedback f WHERE order_id = o.order_id AND record_type = 'GREVIANCE') Issue_category, (SELECT f.rating FROM
terrabikes.feedback f WHERE order_id = o.order_id AND record_type = 'FEEDBACK') rating,
 (SELECT f.status FROM terrabikes.feedback f WHERE order_id = o.order_id AND record_type = 'GREVIANCE') status
 FROM terrabikes.orders o JOIN terrabikes.order_details od ON od.order_id = o.order_id ORDER BY od.order_detail_id;
 -- Load Sales Table
 INSERT INTO Sales (Product_Key, Calendar_Key, Order_Detail_Key, Region_Key, Customer_Key, Price, qty)
 SELECT p.product_key, cd.calendar_key, od.order_detail_key, r.region_key, c.customer_key, todd.price,
todd.quantity FROM terrabikes.orders tod, terrabikes.order_details todd, terrabikes.customer tc, terrabikes.regions tr, customer c,
region r, product p, order_details od, calendar cd WHERE tod.order_id = todd.order_id AND tc.customer_id = tod.customer_id
AND tr.region_id = tc.region_id AND c.customer_id = tc.customer_id AND r.state = tr.state_name AND r.region = tr.region AND
p.product_id = todd.product_id AND od.order_detail_id = todd.order_detail_id AND cd.full_date = od.order_date;
 -- Load Performance Table
 INSERT INTO Performance (Calendar_Key, Employee_Key, Region_Key, Order_Detail_Key, employee_ratings)
 SELECT c.calendar_key, e.employee_key, r.region_key, od.order_detail_key, te.emp_rating FROM
terrabikes.orders tod, terrabikes.order_details todd, terrabikes.employee te, terrabikes.regions tre, calendar c,
 employee e, region r, order_details od WHERE tod.order_id = todd.order_id AND te.employee_id = tod.employee_id
AND tre.region_id = te.region_id AND c.full_date = tod.ordered_date AND e.employee_id = tod.employee_id AND r.state =
tre.state_name AND r.region = tre.region AND od.order_detail_id = todd.order_detail_id;
 SET o_status = 'Success';
END

Queries (Operation DB)

Usage Query
User Information select t.role

 from users u, type t

Page | 25

 where upper(u.username) = upper(%s)
 and u.pwd = md5(%s)
 and t.user_role_id = u.user_role_id

Fetch User Email select username, c.email_id, e.employee_id
 from users u
 left join customer c
 on c.customer_id = u.customer_id
 left join employee e
 on e.employee_id = u.employee_id
 where upper(u.username) = upper(%s)

Update Passwords update users
 set pwd = md5(%s)
 where upper(username) = upper(%s)

Customer Name select concat(first_name,' ',c.last_name)
 from users u, customer c
 where c.customer_id = u.customer_id
 and upper(u.username) = upper(%s)

Order Information select o.order_id, o.order_status, o.ordered_date, o.shipped_date, concat(e.first_name, ' ',
e.last_name) as "Sales Rep"
 from orders o, employee e, customer c, users u
 where upper(u.username) = upper(%s)
 AND u.customer_id = c.customer_id
 AND o.employee_id = e.employee_id
 AND o.customer_id = c.customer_id;

Product Information select p.product_id, p.product_name, p.price as "unit price", od.quantity, (p.price*od.quantity)
as "gross price",
 od.discount, CASE WHEN od.discount is not null
 THEN round(((p.price*od.quantity) - od.discount),2)
 ELSE round((p.price*od.quantity),2)
 END as "net price"
 from orders o, order_details od, products p
 where o.order_id = od.order_id
 and p.product_id = od.product_id
 and o.order_id = %s;

Product Discount select price,quantity,discount_percent from products where product_id = %s
Order Drop Down select concat('Order: ',order_id,' Status: ',order_status, ' Ordered Date: ', ordered_date)

 from orders o, users u
 where o.customer_id = u.customer_id
 and upper(u.username) = upper(%s)

Grievance Details select f.order_id, f.grevience_category, f.status, f.creation_date,f.comments, f.emp_comments
 from feedback f, customer c, users u
 where f.record_type = 'GREVIANCE'
 and c.customer_id = f.customer_id
 and c.customer_id = u.customer_id
 and upper(u.username) = upper(%s)

Inventory Information select p.product_id, p.product_name, c.category_name, b.brand_name, p.model_year, p.price,
p.discount_percent, p.quantity, p.inventory_status
 from products p, category c, brand b
 where p.brand_id = b.brand_id
 and c.category_id = p.category_id

Warehouse Information select wi.product_id, w.warehouse_id, w.warehouse_name, wi.quantity, w.address, w.contact,
wi.status, wi.warehouse_inv_id
 from warehouse w, warehouse_inventory wi
 where w.warehouse_id = wi.warehouse_id
 and wi.product_id = %s

Page | 26

Warehouse Orders select ws.supply_order_id, wi.product_id, w.warehouse_name, ws.need_by_date,
ws.qty_ordered, ws.shipment_status,
 ws.creation_date
 from warehouse w, warehouse_inventory wi, warehouse_supply ws
 where w.warehouse_id = wi.warehouse_id
 and wi.warehouse_inv_id = ws.warehouse_inv_id
 and wi.product_id = %s
 and w.warehouse_id = %s

Customer Details select customer_id, concat(first_name,' ',last_name) customer_name, status, end_date,
 (select count(order_id) from orders where customer_id = c.customer_id)
order_count,
 contact, email_id, address, city, state_name, region
 from customer c, regions r
 where c.region_id = r.region_id

Employee List select e.employee_id, concat(e.first_name, ' ', e.last_name) as Employee_Name, e.status,
 e.end_date, r.region, (select count(order_id) from orders where employee_id =
e.employee_id)as order_count
 from users u,manager m,employee e, regions r
 where u.username = %s
 and u.employee_id = m.manager_emp_id
 and e.region_id = r.region_id
 and e.manager_id = m.manager_id;

Employee Details select e.employee_id, e.email_id, e.contact,e.address, r.state_name, r.city, e.emp_rating,
 e.bonus, e.salary
 from employee e, regions r
 where e.region_id = r.region_id
 and e.employee_id = %s

Employee Page select concat(e.first_name, ' ', e.last_name) as Name ,
TRIm(SUBSTRING_INDEX(e.address, ',', 1)) address,
r.state_name,r.city, TRIm(SUBSTRING_INDEX(e.address, ' ', -1)) as Postal_code
 ,e.contact,e.start_date,e.end_date,e.Salary,e.email_id,e.emp_rating,
 e.bonus,e.leaves_taken, u.username
 from employee e, regions r, users u
 where e.region_id = r.region_id
 and e.employee_id = u.employee_id

12.3. Queries (Analytical DB)

Usage Query
Summary Labels (Sales
Dashboard)

SELECT
 COUNT(DISTINCT od.order_id) order_count,
 COUNT(DISTINCT s.customer_key) customer_count,
 SUM(s.qty) total_items,
 ROUND(SUM(s.price), 2) total_sales,
 ROUND(AVG(od.rating), 2) average_rating,
 ROUND((COUNT(DISTINCT od.order_id) / ((DATEDIFF(MAX(order_date),
MIN(order_date)) / 365) * 12)),
 2) avg_orders

Page | 27

 FROM
 sales s,
 order_details od
 WHERE
 s.order_detail_key = od.order_detail_key

Region Orders (Sales
Dashboard)

select r.region, count(distinct od.order_id)
 from sales s, region r, order_details od
 where s.region_key = r.region_key
 and od.order_detail_key = s.order_detail_key
group by r.region
 order by 1

Order Status Counts
(Sales Dashboard)

select count(*), order_status from order_details where 1=1
group by order_status
 order by 1

Order Counts by Year
(Sales Dashboard)

select cd.year, monthname(cd.full_date), count(distinct od.order_id), cd.month
 from sales s, calendar cd, order_details od
 where s.calendar_key = cd.calendar_key
 and od.order_detail_key = s.order_detail_key
group by cd.year, monthname(cd.full_date), cd.month
 order by 1 desc,4

Quantities By
Category (Sales
Dashboard)

select c.year, p.category_name, count(s.qty)
 from product p, sales s, order_details o, calendar c
 where s.product_key = p.product_key
 and o.order_detail_key = s.order_detail_key
 and c.calendar_key = s.calendar_key
group by p.category_name, c.year
 order by 1 desc, 2

Top Products (Sales
Dashboard)

select p.product_name, sum(qty) items_sold, count(distinct o.order_id) orders
 from sales s, product p, calendar cd, order_details o
 where s.product_key = p.product_key
 and cd.calendar_key = s.calendar_key and o.order_detail_key = s.order_detail_key
group by p.product_name
 order by 3 desc
 limit 10

Top Employee By Sales
(Employee Dashboard)

with top_emp as (select employee_id, round(sum(price),2)
 from employee_sales_view
 where 1=1
and year = (select max(year) from calendar)
group by employee_id
 order by 2 desc limit 5)
select ev.year, ev.employee_id, ev.employee_name,
 round(sum(ev.price),2) as Revenue_generated, count(distinct ev.order_id) as
count_of_orders
 from employee_sales_view ev, top_emp te
 where ev.employee_id = te.employee_id
group by year, employee_id, employee_name
 order by 1,4 desc;

Avg. Rating by.
Employee (Employee
Dashboard)

select year, region, round(avg(rating),1)
 from employee_sales_view
 where 1=1

Page | 28

group by year, region
 order by 1,2 desc

Top 10 Employees
(Employee Dashboard)

select employee_name, round(sum(price),2), count(distinct order_id) from employee_sales_view
 where 1=1
group by employee_name
 order by 2 desc
 limit 10

Employee
Performance by
Region (Employee
Dashboard)

select region,
 round(sum(price),2) as Revenue_generated, COUNT(DISTINCT order_id) as count_of_orders
 from employee_sales_view
 where 1=1
group by region
 order by 1 desc;

Summary Labels
(Employee Dashboard)

select region, count(DISTINCT order_id) as order_count,
 round(sum(price),2) as Revenue_generated
 from employee_sales_view
 where 1=1
group by region
 order by 3 desc limit 1
select state, count(DISTINCT order_id) as order_count,
 round(sum(price),2) as Revenue_generated
 from employee_sales_view
 where 1=1
group by state
 order by 3 desc limit 1
select employee_name,
 round(sum(price),2) as Revenue_generated
 from employee_sales_view
 where 1=1
group by employee_name
 order by 2 desc
 limit 1
select employee_name,count(distinct order_id) as count_of_orders
 from employee_sales_view
 where 1=1 group by employee_name
 order by 2 desc
 limit 1
select employee_name, count(distinct order_ID) AS TOTAL_ORDERS
 from employee_sales_view
 where rating >= 4 group by employee_name
 order by 2 desc
 LIMIT 1
select employee_name,
 round(sum(price),2) as Revenue_generated
 from employee_sales_view
 where 1=1 group by employee_name
 order by 2 asc
 limit 1

