San José State University Department of Applied Data Science

DATA 201 Database Technologies for Data Analytics

Sections 21 and 71 Spring 2025

Course and Contact Information

Instructor:	Ron Mak
Office location:	Clark Hall CL 325
Email:	<u>ron.mak@sjsu.edu</u>
Website:	http://www.cs.sjsu.edu/~mak/
Office hours:	Tu Th 4:30 – 5:30 PM
Class days/time:	Th: 6:00 – 8:45 PM
Classroom:	ISB 782
Prerequisites:	Classified standing or instructor consent.

Course Catalog Description

"File organization and storage structure, database system architecture, entity relationship model, normalization techniques, SQL, relational algebra, storage organization, query processing, and concurrent control."

Course Format

This class will meet in person in the classroom. Exams will be given in the classroom.

Faculty Web Page and Canvas

Course materials, syllabus, assignments, grading criteria, exams, and other information will be posted at my <u>faculty website</u> at http://www.cs.sjsu.edu/~mak and on the <u>Canvas Learning</u> <u>Management System course login website</u> at http://sjsu.instructure.com. You are responsible for regularly checking these websites to learn of any updates. You can find Canvas video tutorials and documentations at http://ges.sjsu.edu/canvas-students

Course Goals

This class emphasizes the technologies to design and develop **operational and analytical database applications.** These applications are client-side Python programs that interact with server-side databases programmed in SQL. Analytical topics include performing different types of data analysis such as time series and multiple regression in the database server using SQL, and then graphing the results on the client side using Python. Each project team will create a front-end Python GUI (graphical user interface) for users to interact with back-end operational and analytical databases through windows, buttons, menus, and dialog boxes.

Course Learning Outcomes (CLO)

Upon successful completion of this course, students will be able to:

- CLO 1: Understand and explain the functional aspects of relational databases.
- CLO 2: Choose appropriate data models and data management tools for a given application.
- CLO 3: Design appropriate relational schemas for operational databases and dimensional models for analytical databases.
- CLO 4: Implement and manage well-designed operational and analytical databases.
- CLO 5: Perform data management operations such as normalization and extract-transform-load (ETL).
- CLO 6: Program proficiently in SQL and stored procedures, including implementing server-side analytical operations in SQL.
- CLO 7: Write command-line- and GUI-based Python applications that enable users to interactively access and manage data in operational and analytical databases.
- CLO 8: Develop a substantial database application in a small project team and provide an oral presentation and a written report about the application.
- CLO 9: Confidently discuss database technologies for data analytics.

Recommended Books

Title:	Database Systems: Introduction to Databases and Data Warehouses, Edition 2.0	
Authors: Publisher:	Nenad Jukic, Susan Vrbsky, Svetlozar Nestorov, Abhishek Sharma Prospect Press, 2021	
eTextbook:	978-1-943153-67-1 available from Redshelf.com and VitalSource.com	
Paperback:	978-1-943153-68-8 available from Redshelf.com	
	Many examples in class will come from this excellent book. We will also use the book's database modeling tools at <u>https://erdplus.com</u>	
Title:	Principles of Database Management: The Practical Guide to Storing, Managing and Analyzing Big and Small Data	
Authors: Publisher: ISBN:	Wilfried Lemahieu, Seppe vanden Broucke, Bart Baesens Cambridge University Press, 2018 978-1107186125	
	A more advanced text. Well-written with many examples and colorful diagrams.	
Title:	The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition	
Authors: Publisher: ISBN:	Ralph Kimball and Margy Ross Wiley, 2013 978-1118530801	
	Ralph Kimball is a pioneer of data warehousing and dimensional data modeling. I have worked closely with Dr. Kimball in the past.	

Some Useful Websites

- SQL Tutorial <u>https://www.w3schools.com/sql/</u>
 MySQL 8.0 Reference Manual
 - https://dev.mysql.com/doc/refman/8.0/en/
- MySQL 8.0 Error Message Reference
 https://dev.mysql.com/doc/mysql-errors/8.0/en/
- MySQL Connector/Python Developer Guide
 https://dev.mysql.com/doc/connector-python/en/
- MySQL Workbench
 <u>https://dev.mysql.com/doc/workbench/en/</u>
- PyQt5 Tutorial
 <u>https://www.tutorialspoint.com/pyqt5/index.htm</u>
- Tutorials on MySQL Shell and MySQL Workbench <u>http://www.cs.sjsu.edu/~mak/tutorials/index.html</u>

Software to Install

You will need the MySQL database server and Python.

Install the free MySQL Community Server for your platform (Windows, MacOS, or Linux) from <u>https://www.mysql.com/downloads/</u>. Also install the database management tool MySQL Workbench at <u>https://www.mysql.com/products/workbench/</u>

A good way to install Python is via **Anaconda**: <u>https://www.anaconda.com</u>. This will install the Python interpreter, Jupyter notebook, and several key data science libraries.

After installing Anaconda, you can execute the following commands if you need to update the installed packages to their latest versions:

conda update conda conda update --all

You will need to install the **MySQL Connector/Python** which allows a Python program to access a MySQL database:

pip3 install mysql-connector-python

To create Python programs with a GUI (graphical user interface), install **Qt Designer** which will enable you to design windows with labels, text boxes, menus, buttons, etc.: <u>https://build-system.fman.io/qt-designer-download</u>

Install the **PyQt5 modules** with this command:

pip3 install PyQt5

Then you will be able to create GUI-based Python applications that enable users to interact with your database via forms.

Project teams

You will form small project teams. *Team membership is mandatory for this class*. The teams will last throughout the semester. Once the teams are formed, you will not be allowed to move from one team to another, so form your teams wisely!

Course Requirements and Assignments

You should have good Python programming skills and be familiar with its development tools.

Weekly individual- and team-based assignments will provide practice with database design techniques and give you experience developing code for database applications. *Each student on a team will receive the same score for each team-based assignment.*

Submit each assignment into Canvas (only one submission per team for a team assignment), where the scoring rubric will be displayed. Late assignments will lose 20 points and an additional 20 points for each 24 hours after the due date.

The university's syllabus policies:

- <u>University Syllabus Policy S16-9</u> at http://www.sjsu.edu/senate/docs/S16-9.pdf.
- Office of Graduate and Undergraduate Program's <u>Syllabus Information web page</u> at http://www.sjsu.edu/gup/syllabusinfo/

"Success in this course is based on the expectation that students will spend, for each unit of credit, a minimum of 45 hours over the length of the course (normally three hours per unit per week) for instruction, preparation/studying, or course related activities, including but not limited

to internships, labs, and clinical practica. Other course structures will have equivalent workload expectations as described in the syllabus."

Exams

The exams will test understanding (not memorization) of the material taught during the semester and now well each of you participated in your team assignments and project. Instant messaging, e-mails, texting, tweeting, file sharing, or any other forms of communication with anyone else during the exams will be strictly forbidden.

Instead of a single midterm examination, there will be three "checkpoint" exams during the semester which will be conducted in Canvas. There will be no make-up examinations unless there is a documented medical emergency.

There will be <u>no final examination</u> — the team data management project takes its place. The project includes an oral presentation at the end of the semester on the assigned final exam date.

Academic Integrity

A data scientist must possess data analytics skills and the integrity to perform the analyses honestly. Therefore, exams in this class test both skills and honesty. The latter means strict adherence to the university's Academic Integrity Policy. Any violations, including sharing answers, will result in a score of zero for the entire exam. Repeated violations can result in failing the class and being reported to the Student Conduct Office.

Team Project

In addition to the team-based assignments, each project team will develop a significant data management application during the semester using Python and a database. This project will involve:

- A GUI-based Python application that accesses a well-designed operational and analytical database. The application should perform server-side data analytics and display results with client-side Python code.
- Data sources chosen by each team from the internet or other sources, or fake (but realistic) data generated by tools such as **mockaroo** (<u>https://www.mockeroo.com</u>).
- Use of data management tools that demonstrates a strong understanding of how to effectively apply the tools in meaningful ways on the chosen data sources.
- A written report (15-20 pp.) that describes the requirements and goals of the project and how they were met. The report should include a description of the project's ETL procedure, entity relationship (ER) diagrams, and screenshots of key application displays.

Each team will give an oral presentation at the end of the semester that includes a demo of its application. The rest of the class (along with the instructor) will score each presentation based on a given set of criteria. *Each student on a team will receive the same score for the project.*

Grading Information

Individual total scores will be computed with these weights:

30% Assignments*
10% Checkpoint exam #1**
10% Checkpoint exam #2**
10% Checkpoint exam #3**
40% Database application project*** *individual and team scores individual scores team scores*

This is a CR/NC course. A total score of at least 75% is required for CR.

Postmortem Report

At the end of the semester, each student must also turn in a short (under 1 page) individual postmortem report that includes:

- A brief description of what you learned in the course.
- An assessment of your accomplishments for your team assignments and design project.
- An assessment of each of your other project team members.

Only the instructor will see these reports. How your teammates evaluate you will be factored into your course grade.

Technology Requirements

Students are required to have an electronic device (laptop, desktop, or tablet) with a camera and microphone. SJSU has a free <u>equipment loan program</u> available for students: <u>https://www.sjsu.edu/learnanywhere/equipment/index.php</u>

Students are responsible for ensuring that they have access to reliable Wi-Fi during tests. If students are unable to have reliable Wi-Fi, they must inform the instructor, as soon as possible or at the latest one week before the test date to determine an alternative. See <u>Learn</u> <u>Anywhere</u> website for current Wi-Fi options on campus.

University Policies

Per University Policy S16-9, university-wide policy information relevant to all courses, such as academic integrity, accommodations, etc. will be available on Office of Graduate and Undergraduate Program's <u>Syllabus Information web page</u> at http://www.sjsu.edu/gup/syllabusinfo/.

DATA 201 Database Technologies for Data Analytics

Section 21 and 71 Spring 2025 Instructor: Ron Mak

Course Schedule (subject to change with fair notice)

Week	Date	Topics
1	Jan 23	Overview of the course
		Introduction to databases and database applications
		Introduction to SQL
		The SELECT command
		Table joins
		Traditional vs. modern SQL-92 syntax
		MySQL and MySQL Workbench
		Form project teams
2	Jan 30	Operational databases
		Python connection to a MySQL database
		Create databases and load tables
		Create users and grant privileges
		Dump and restore a database
		Data modeling
		Entity-relationship (ER) diagrams
		Relationships between entities
3	Feb 6	Creating ER diagrams
		Mapping ER diagrams to relational schemas
		Mapping relational schemas to physical models
		Referential integrity constraint
	D 1 12	EER diagrams
4	Feb 13	Named constraints
		Table creation and deletion with constraints
		Update anomalies
		Functional dependencies and normalization
	F.1. 20	Normal forms
5	Feb 20	<i>Checkpoint exam #1</i> (held during the first part of the class)
		A garagata functions
		Aggregate functions GROUP BY and HAVING
		INSERT INTO with SELECT
		INSERT INTO WITH SELECT

Week	Date	Topics
6	Feb 27	ALTER TABLE
		Cascading updates and deletes
		SQL window functions
		Text, numeric, date, and time functions
		Types of joins
		Common table expressions (CTEs) and views
		Indexing
7	Mar 6	Nested SELECTS and subqueries
		Database design example
		Stored procedures
		Triggers and events
		GUI-based Python database applications
		Team project requirements
8	Mar 13	SQL lab
9	Mar 20	Checkpoint exam #2 (held during the first part of the class)
		Object-relational mapping (ORM)
10	Mar 27	ACID properties
		Concurrency
		Transaction management
		Checkpoints and recovery
		Reliability and RAID
	Mar 31 – Apr 4	Spring recess
11	Apr 10	Data analysis with SQL
		Coding analytical formulas in SQL
		Data wrangling
		Replacing missing values
		Multiple linear regression
		Outliers
12	Apr 17	SQL ROLLUP
		Time-series analysis
		Moving averages and exponential smoothing
		Introduction to analytical databases
		Operational vs. analytical databases
		Data warehousing and data marts
		Dimensional modeling and star schemas
13	Apr 24	Checkpoint exam #3

Week	Date	Topics
14	May 1	Dimension tables and fact tables
		Types of fact tables
		Fact table granularity
		Extract-transform-load (ETL)
		Slowly changing dimensions
15	May 8	Factless fact tables
		Online transaction processing (OLTP)
		Online analytical processing (OLAP)
		Database server topics
		Query processing and optimization
		Security and public key encryption
FINAL	May 15	Oral project presentations (instead of a final exam)
		5:30 – 7:30 PM