San Jose State University Department of Applied Data Science
**DATA 200 Computational Programming for Data Analytics**
Spring 2023 Instructor: Ron Mak
"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 4.11 Arbitrary Argument Lists"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### We can define a function with an **arbitrary argument list**, meaning we can call it with any number of arguments. In the function definition, we use a parameter of the form `*args`. That tells Python to pack the arguments into a tuple by that name. By convention, the name`args` is used, but you can use any name."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Defining a Function with an Arbitrary Argument List"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def average(*args):\n",
" return sum(args) / len(args)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"average(5, 10)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"average(5, 10, 15)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"average(5, 10, 15, 20)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### If the function has multiple parameters, the `*args` parameter must be the rightmost one."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Passing an Iterable’s Individual Elements as Function Arguments "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### You can use the `*` operator to unpack a list, tuple, or any other iterable object to pass its individual items to a function."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"grades = [88, 75, 96, 55, 83]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"average(*grades)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### This is equivalent to:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"average(88, 75, 96, 55, 83)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### This function `print_minimum()` must be called with at least two arguments, but there can be more."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def print_minimum(parm1, parm2, *args):\n",
" m = min(parm1, parm2, *args)\n",
" print(f'The minimum of {len(args) + 2} values is {m}')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print_minimum(34, 12)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print_minimum(34, 12, 7, 46, 91)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print_minimum(34, 12, *range(5, 11))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print_minimum(34)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"##########################################################################\n",
"# (C) Copyright 2019 by Deitel & Associates, Inc. and #\n",
"# Pearson Education, Inc. All Rights Reserved. #\n",
"# #\n",
"# DISCLAIMER: The authors and publisher of this book have used their #\n",
"# best efforts in preparing the book. These efforts include the #\n",
"# development, research, and testing of the theories and programs #\n",
"# to determine their effectiveness. The authors and publisher make #\n",
"# no warranty of any kind, expressed or implied, with regard to these #\n",
"# programs or to the documentation contained in these books. The authors #\n",
"# and publisher shall not be liable in any event for incidental or #\n",
"# consequential damages in connection with, or arising out of, the #\n",
"# furnishing, performance, or use of these programs. #\n",
"##########################################################################\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Additional material (C) Copyright 2023 by Ronald Mak"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 4
}