

1

San José State University
Engineering Extended Studies

CMPE 202
Software Systems Engineering

Section 47

Spring 2025
Instructor: Ron Mak

Assignment #3
Assigned: Tuesday, February 18

Due: Tuesday, March 11 at 11:59 PM
 Team assignment, 200 points max

Class design and the Rock-Paper-Scissors game
This assignment will give you a chance to demonstrate iterative development and
good class design.

Write an application that implements a Rock-Paper-Scissors game with two players. One
player is human, and the other player is the computer. The computer can play using one
of two strategies — one where it simply makes random choices, and the other where it
uses some basic machine learning to make more optimal choices.

Your application should demonstrate the use of appropriate design principles that we
covered in class. Use an iterative approach during development.

Basic game rules
Rock beats scissors, scissors beat paper, and paper beats rock. See
https://www.wikihow.com/Play-Rock,-Paper,-Scissors
Your application should play a game of 20 rounds. During each round, the human player
makes a choice by typing R, P, or S in response to a prompt to choose rock, paper, or
scissors, respectively. The computer makes its choice (without “seeing” the human
player’s choice, of course). Display whether the human won, or the computer won, or it
was a tie (both players made the same choice). At the end of the game, display the final
score.
The computer can play using either of the two strategies to make its choices. Before the
start of each game, use a command-line option or a prompt to determine which strategy
the computer will use.
Your “game engine” which controls the game (prompts the human player each round for
a choice, obtains the computer’s choice, keeps track of the score, etc.) should not need
to know which strategy the computer is using.
Tip: How your application obtains the human player’s choices may change in the future.

https://www.wikihow.com/Play-Rock,-Paper,-Scissors

2

The random strategy
For each round, the computer simply chooses rock, paper, or scissors randomly. You
can use the C++ random number generator function rand().

The smart strategy
Human players of Rock-Paper-Scissors try to develop personal strategies to beat their
opponents. Therefore, human players generally do not make random choices. Instead,
their choices exhibit patterns that a computer can discover and exploit using a machine
learning (ML) algorithm.

Here’s how to implement a simple ML algorithm for the computer to enable a computer
to predict with increasing accuracy what the human player’s choice will be for each
round. Continuously record the last N choices between the human and the computer
player. Throw out the oldest choice in order to add a new one. For example, suppose N
= 5 and during the game, the recorded choices are (the human’s choices are
underlined):

PSRSP

The last choice was made by the human, and it was paper.

For each recorded sequence that ends with the human player’s choice, the computer
should store how many times that sequence has occurred (each sequence’s frequency).

For example, for N = 5, some of the stored sequences and their frequencies may be
(in no particular order, and the human player’s choices are underlined):

RSPSR:1, SPRPP:3, RSPRS:2, RSPSS:4, RSPSP:3, SSRPP:2

Now suppose during the game, the last four choices are RSPS. In other words, in the
last round, the human player chose paper and the computer chose scissors. The
computer can predict that the human player will most likely next choose scissors, since
RSPSS appears more times (4) than RSPSR (1, predict rock) and RSPSP (3, predict
paper) in the stored frequencies. Therefore, the computer should choose rock to beat
the human player’s predicted choice of scissors. Each time after the human player
makes a choice, update the appropriate stored frequency.

If a sequence is not in the frequency store, the computer can make a random choice.

At the end of each game of 20 rounds, write the frequencies to a disk file. At the start of
each game, read the frequencies. As the computer plays more games and obtains more
frequency data, it becomes increasingly better at predicting the human player’s next
choice. Over the long haul, the computer will become very difficult for human players to
beat, especially those who don’t know the computer’s ML algorithm.

Instead of a Large Language Model (LLM) for a chatbot, is this a Large Game Model
(LGM) for Rock-Paper-Scissors?

3

What to turn in
Each team designs and implements the Rock-Paper-Scissors application. The
application should include both the random and the smart strategy to play against a
human player. Determine which strategy to use before a game starts either by a
command-line option or a prompt. Your game engine should not depend on which
strategy is in use.

Submit a zip file named after your team that contains your C++ source files and a short
report that describes:

• Your iterative development. What were your major iterations and what was
accomplished during each one? Was there any significant backtracking?

• A UML class diagram at an appropriate level of detail of your primary classes and
their relationships.

• Which appropriate design principles you used and how did you used them
(cohesion, loose coupling, hidden implementations, coding to the interface,
encapsulate change, etc.)

Rubric
Your submission will be graded according to these criteria:

Criteria Max points
Iterative development

• What was completed during each iteration and any
significant backtracking.

20

Well-designed classes
• UML class diagrams.
• Good class relationships (dependency, aggregation,

inheritance).
• Well-chosen names of classes, member functions, and

member variables.

60
• 25
• 25

• 10

Descriptions of design principles used by the application. 60
Working application

• Rock-Paper-Scissors game, human player vs. computer.
• Random strategy for the computer.
• Smart strategy for the computer.
• Game engine doesn’t depend on which strategy is used.

60
• 20
• 5
• 25
• 10

Thoughts to ponder
Would the ML algorithm be “smarter” if you used a larger value for N? What if you
recorded several throw sequences simultaneous for various values of N (for example,
N = 3, 4, 5, 6, 7, etc.) and then somehow made a prediction from among all of them?
Can you devise a better computer’s choice algorithm? If we did a tournament that pitted
each team’s program against the other teams, would your program win more games?

