
 

 

1 

San José State University 
Engineering Extended Studies 

 

CMPE 202 
Software Systems Engineering 

Section 47 

Spring 2025 
Instructor: Ron Mak 

Assignment #2 
Assigned: Tuesday, February 11 

Due: Tuesday, February 18 at 11:59 PM 
 Team assignment, 100 points max 

Design Specification 
Write a Design Specification for an imagined project. Be creative – at the end of the 
semester, we won’t hold you to this project. Your software design can use your classes 
from Assignment #1, or you can do something completely different. A design spec 
should be read and understood by the software developers. 

Your specification should include: 

• Well-design classes (at least four) 
• UML class diagrams for your important classes. Show the relationships 

between classes using the appropriate connectors. Show any multiplicity. Include 
some important attributes (member variables) and methods (member functions). 

• Describe your good class design by pointing out how your classes are 
cohesive and loosely coupled with hidden implementations. Discuss how you 
used aggregations and/or compositions. 

• Encapsulation. Discuss what can change in your application and how you 
encapsulated those potential changes. 

You can use a UML drawing tool to create the diagrams and insert the diagrams into 
your specification. Two free UML drawing tools: 

• Violet: http://horstmann.com/violet/ 
• StarUML: http://staruml.sourceforge.net/en/ 

Use your imagination! You will not be asked to write a program that implements 
everything you put in this Design Specification. 

http://horstmann.com/violet/
http://staruml.sourceforge.net/en/


 

 

2 

What to turn in 
Each team should create a PDF containing the Design Specification. Name the file after 
your team, such as Supercoders.pdf. Submit it into Canvas: Assignment #2: 
Design Specification 

This is a team assignment. Each member of the team will receive the same score. 

Rubric 
Your Design Specification will be graded according to these criteria: 

Criteria Max points 
Well-designed classes (at least 4) 

• Good names 
• Well-named member variables 
• Well-named member functions 

 
UML class diagrams 

• Correctly drawn class diagrams 
• Good class relationships (dependency, aggregation, inheritance) 

 
Descriptions of how your classes are: 

• Cohesive (single responsibility) 
• Loosely coupled (minimal dependencies) 
• Hidden implementations (public vs. private) 
• Encapsulate change 

30 
• 10 
• 10 
• 10 

 
30 

• 15 
• 15 
 

40 
• 10 
• 10 
• 10 
• 10 

 


