
CMPE 135 Object-Oriented Analysis and Design, Spring 2019, Ron Mak Page 1 of 6

San José State University
Department of Computer Engineering

CMPE/SE 135
Object-Oriented Analysis and Design

Section 1
Spring 2019

Course and Contact Information
Instructor: Ron Mak
Office Location: ENG 250
Email: ron.mak@sjsu.edu
Website: http://www.cs.sjsu.edu/~mak/
Office Hours: TuTh 3:00 - 4:00 PM
Class Days/Time: TuTh 1:30 - 2:45 PM
Classroom: ENG 337
Prerequisites: For SE Majors: CS 046B

For others: CMPE 126

Course Format
This course will be taught primarily via classroom presentations.

Faculty Web Page and Canvas
Course materials, syllabus, assignments, grading criteria, exams, and other information will be posted at my
faculty website at http://www.cs.sjsu.edu/~mak and on the Canvas Learning Management System course login
website at http://sjsu.instructure.com. You are responsible for regularly checking these websites to learn of any
updates. You can find Canvas video tutorials and documentations at http://ges.sjsu.edu/canvas-students

Course Catalog Description
“Feasibility analysis and system requirements determination, object-oriented design methodology, and
information systems design using object-oriented modeling techniques. Emphasis on both theoretical and
practical aspects of object-oriented systems analysis and design. Team-based design project.”

Course Goals
Become familiar with object-oriented analysis and program design. Employ industry-standard practices of an
object-oriented approach to software development. Avoid the pitfalls of object-oriented design.
The primary goal of this course is to become a much better programmer.
The instructor will share decades of experience as a successful software developer in industry, government, and
scientific research institutions. The programming examples will be in C++, but the material will apply well to
other object-oriented languages such as Java.

CMPE 135 Object-Oriented Analysis and Design, Spring 2019, Ron Mak Page 2 of 6

Course Learning Outcomes (CLO)
Upon successful completion of this course, students will be able to:
CLO 1: Requirements gathering: Gather the requirements for a software application, distinguish between

functional and nonfunctional requirements, and express the requirements in the form of use cases.
CLO 2: Object-oriented analysis: Derive the appropriate classes from the requirements and define their

responsibilities, behaviors, interrelationships, and internal structures. Draw UML use case, class, and
sequence diagrams to document and communicate the analysis results.

CLO 3: Object-oriented design: Apply the results of analysis to implement the classes and interfaces.
Incorporate concepts such as inheritance and polymorphism, programming by contract, coding to the
interface, the open-closed principle, the Liskov substitution principle, and the Law of Demeter. Write
code that is easily tested and use proven testing techniques.

CLO 4: Design patterns: Learn the major “Gang of Four” design patterns and recognize when it is appropriate
to apply them.

CLO 5: The C++ object model: Understand how C++ implements the object model, including the Standard
Template Library (STL). Become aware of the hazards of C++.

CLO 6 GUI programming: Develop interactive programs that have a graphical user interface (GUI). Use
callback routines with a software framework and comprehend inversion of control.

CLO 7: Multi-threaded programming: Learn the basics of programming multiple threads of control using
semaphores, mutexes, and critical regions.

You will follow industry-standard best practices and use software development tools that are common in
today’s software industry.
You will develop the critical job skill of working in a small project team to successfully develop a software
application that uses shared interfaces and data formats. Your application can then interact with applications
from other teams to exchange data and results.

Academic Integrity
“Major exams in this class may be video recorded to ensure academic integrity. The recordings will only be
viewed if there is an issue to be addressed. Under no circumstances will the recordings be publicly released.”

Recommended Texts
This book provides optional background material. The examples are in Java.

Title:

Author:
Publisher:

ISBN:

Object-Oriented Analysis, Design and Implementation:
An Integrated Approach, 2nd edition
Brahma Dathan and Sarnath Ramnath
Springer, 2015
978-3319242781

CMPE 135 Object-Oriented Analysis and Design, Spring 2019, Ron Mak Page 3 of 6

Software to Install
You should install and use an interactive development environment (IDE) such as Eclipse. To write interactive
programs that have a graphical user interface (GUI), you will need to download and install the wxWidgets
package. This is relatively straightforward on the Mac and Linux platforms. However, the Windows platform
often has significant compatibility challenges. Therefore, if you’re on Windows, we highly recommend that you
download and install the VirtualBox virtual machine manager, and then install and run Ubuntu (a variant of
Linux) in a virtual machine.
Some useful tutorials:

• “Install and Configure VirtualBox on Windows”
http://www.cs.sjsu.edu/~mak/tutorials/InstallVirtualBox.pdf

• “Install and Configure Ubuntu on a VirtualBox Virtual Machine”
http://www.cs.sjsu.edu/~mak/tutorials/InstallUbuntu.pdf

• “Install and Configure Eclipse on Ubuntu for Java and C++ Development”
http://www.cs.sjsu.edu/~mak/tutorials/InstallEclipse.pdf

• “Install and Configure wxWidgets on Ubuntu”
http://www.cs.sjsu.edu/~mak/tutorials/InstallwxWidgets.pdf

Course Requirements and Assignments
You should have good C++ programming skills and be familiar with software development tools such as
Eclipse.
You will work during the semester in small teams. Programming assignments will provide practice with OOAD
techniques and will include developing a game program that uses simple machine learning. Each assignment
will include rubrics for its grading criteria.
Each team will also have a semester design project to develop an application that it can demonstrate to the class.
Each team will write a short report (10-15 pp.) that describes the design patterns and other OOAD techniques
that it used, including a high-level architecture description with UML diagrams.
Each team will submit its assignments and project into Canvas, which will display the scoring rubrics. At the
end of the semester, each team will give a presentation and demo of its design project, and students will help to
score each presentation.
Each assignment and project will be worth up to 100 points, and each will include rubrics for its grading
criteria. Late assignments will lose 20 points and an additional 20 points for each 24 hours after the due date.
The university’s syllabus policies:

• University Syllabus Policy S16-9 at http://www.sjsu.edu/senate/docs/S16-9.pdf.

• Office of Graduate and Undergraduate Program’s Syllabus Information web page at
http://www.sjsu.edu/gup/syllabusinfo/

“Success in this course is based on the expectation that students will spend, for each unit of credit, a minimum
of 45 hours over the length of the course (normally 3 hours per unit per week with 1 of the hours used for
lecture) for instruction or preparation/studying or course related activities including but not limited to
internships, labs, clinical practica. Other course structures will have equivalent workload expectations as
described in the syllabus.”

CMPE 135 Object-Oriented Analysis and Design, Spring 2019, Ron Mak Page 4 of 6

Exams
The midterm and final examinations will be closed book. The exams will test understanding (not memorization)
of the material taught during the semester and now well each of you participated in your team assignments and
project. Instant messaging, e-mails, texting, tweeting, file sharing, or any other forms of communication with
anyone else during the exams will be strictly forbidden.
There can be no make-up quizzes and midterm examination unless there is a documented medical emergency.
Make-up final examinations are available only under conditions dictated by University regulations.

Grading Information
Individual total scores will be computed with these weights:

35% Assignments*
30% Design project*
15% Midterm exam**
20% Final exam**

 * team scores

** individual scores
Each assignment and exam will be scored (given points) but not assigned a letter grade. The average score of
each assignment and exam will be available in Canvas after it has been graded.
Final course grades will be based on a curve. Per CMPE Department policy, the median total score will earn a
B–. Approximately one third of the class will earn higher grades, and another one third will earn lower grades.

Postmortem Report
At the end of the semester, each student must also turn in a short (under 1 page) individual postmortem report
that includes:

• A brief description of what you learned in the course.
• An assessment of your accomplishments for your team assignments and design project.
• An assessment of each of your other project team members.

Only the instructor will see these reports. How your teammates evaluate you may affect your course grade.

Classroom Protocol
It is very important for each student to attend classes and to participate. Mobile devices in silent mode, please.

University Policies
Per University Policy S16-9, university-wide policy information relevant to all courses, such as academic
integrity, accommodations, etc. will be available on Office of Graduate and Undergraduate Program’s Syllabus
Information web page at http://www.sjsu.edu/gup/syllabusinfo/.

CMPE 135 Object-Oriented Analysis and Design, Spring 2019, Ron Mak Page 5 of 6

CMPE/SE 135
Object-Oriented Design and Analysis

Section 1
Spring 2019

Course Schedule (subject to change with fair notice)
Week Dates Topics
1 Jan 24 Introduction

Manage change and complexity
An example of iterative development
Form programming teams

2 Jan 29
Jan 31

Encapsulation
Gather functional and non-functional requirements
Create use cases
Identify objects, behaviors, and dependencies
The Functional Specification

3 Feb 5
Feb 7

Key points for good design
Abstract classes
Designs that scale well
The Boost library

4 Feb 12
Feb 14

Analysis precedes design
Where do classes come from?
UML class, sequence, and state chart diagrams
The Principle of Coding to the Interface
The Design Specification

5 Feb 19
Feb 21

Class design example
Accessors and mutators
Immutable classes
The Law of Demeter and the Principle of Least Knowledge
Cohesion and consistency

6 Feb 26
Feb 28

Programming by contract
Preconditions, postconditions, invariants, and assertions
Pre- and postconditions and inheritance
The Liskov Substitution Principle
Simple machine learning for the Rock-Paper-Scissors game

7 Mar 5
Mar 7

Code reuse
Abstract superclasses
The Principle of Favoring Delegation over Inheritance
“Has a” vs. “is a”
Polymorphism
Virtual destructors

CMPE 135 Object-Oriented Analysis and Design, Spring 2019, Ron Mak Page 6 of 6

Week Dates Topics
8 Mar 12

Mar 14
Midterm exam Tuesday, March 12
The Model-View-Controller architecture
Interactive programming with a graphical user interface (GUI)
Introduction to wxWidgets
Inversion of control
Callback functions
Events and event handlers

9 Mar 19
Mar 21

Software frameworks
A GUI version of Rock-Paper-Scissors
The Open-Closed Principle
What are design patterns?
Strategy design pattern
Observer design pattern

10 Mar 26
Mar 28

Decorator design pattern
Factory method design pattern
Singleton design pattern
Adapter design pattern
Facade design pattern

 Apr 1 - 5 Spring break
11 Apr 9

Apr 11
Template design pattern
Iterator design pattern
Composite design pattern
State design pattern

12 Apr 16
Apr 18

Lambda expressions
Exception handling
Constructor and destructor calls
How does a Standard Template Library (STL) vector grow?
Why did my program crash?
Shallow vs. deep copy

13 Apr 23
Apr 25

Overloading vs. overriding
STL iterators
A “safe” array type
The “Big Three”
C++ template classes and functions
The auto keyword
The decltype pseudo-function

14 Apr 30
May 2

Pointers vs. references
Raw pointers vs. unique and shared smart pointers
Move semantics
Multi-threaded programming

15 May 7
May 9

Project presentations

Final
exam

Friday,
May 17

Time: 12:15 - 2:30 PM
Room: ENG 337

