
 

Visualisation of Software

 

INFORMATIK • INFORMATIQUE 2/2001

 

1

 

A User-Centred Approach for Designing Algorithm Visualizations

 

Sami Khuri 

 

Advances in computing technology and the affordability of software and high-performance graphics
hardware enabled rapid growth of visual tools. Today, not only very expensive workstations, but also low-
cost PCs are capable of running computationally demanding visualization systems. Algorithm visualizations
or the graphic depictions of algorithms in execution are being used in explaining, designing, analysing
algorithms, and in debugging, fine-tuning, and documenting programs. Although many tools have been
developed over the past twenty years, little attention has been paid to the analysis of users, their needs, tasks,
and goals. This paper gives a brief overview of the preliminary design stage of algorithm visualizations,
namely the analysis of requirements. 

 

Keywords:

 

Algorithm Visualization, Educational Software,
Visual Representation of Information, Design Guidelines, User
Centred Approach

 

Introduction

 

Visualization is defined in the dictionary as “mentally
visual images”. In the field of computer science the term has a
more specific meaning: “The technical speciality of visualiza-
tion concerns itself with the display of behaviour, and particu-
larly with making complex states of behaviour comprehensible
to the human eye” [Gallagher 95]. The term was first made
popular in the USA in a 1987 National Science Foundation
initiative on scientific visualization that provided first defini-
tions, goals and examples of visualization in scientific Comput-
ing [McCormick et al. 87]. Since then, numerous applications
ranging from the visualization of mathematical and scientific
data to the simulation of virtual environments have been devel-
oped. In computer science education, visualization tools can
help instructors in a variety of ways, ranging from merely
attracting students’ attention to increasing students’ under-
standing. Visualizations have been used in teaching, designing
and analysing algorithms, producing technical drawings,
debugging, fine-tuning, and documenting programs.

Many new algorithm visualizations are being developed each
year, yet descriptions of visualization systems rarely specify
any particular task they were intended to support [Petre et al.
98]. Creating educational algorithm visualizations requires
substantial time and effort. Mapping an algorithm to an animat-
ed representation is a non-trivial problem; it requires careful
thought and knowledge of a particular algorithm animation
programming framework. Today’s IDEs

 

1

 

 provide many gadg-
ets for designers to experiment with, and the emergence of the
Java programming language allows them to make their systems
available over the Internet. It is so easy to pull down menus and
select different fonts, assign vivid colours and embed an applet
in the Web page. Developers of educational visualization pack-

ages claim that their systems can be used by all kinds of users,
novice and experienced, and in all kinds of tasks: demos,
homework, laboratories, and self-study. But, no algorithm
visualization will ever be universally superior across all kinds
of users and tasks. In what follows, we describe a “user-
centred” framework for designing algorithm visualizations, in
which visualizations are developed for real needs, real users
and real tasks, and not just because the technology to imple-
ment them is there.

 

Designing Algorithm Visualizations

 

Like many other design disciplines, a successful algorithm
visualization design should consider the many facets of design
issues such as effective representation and presentation, objec-
tives, environmental considerations, design and layout, colour,
graphics, and user interface. The process of producing algo-

 

1. IDE: Integrated Development Environment

1

2

Sami Khuri holds a M.Sc. degree in Mathematics, a M.Sc. in
Computer Science and a PhD. in Computer Science, all three
degrees from Syracuse University, USA. He is a Professor of
Computer Science at San Jose State University, USA. He was the
recipient of several research awards. He was a Dana scholar in the
Biomedical Engineering Department at the Johns Hopkins School
of Medicine, a Fulbright scholar at the American University in
Bulgaria and a DAAD scholar at the Technical University of
Munich in Germany. His research interests centre around the
design and analysis of algorithms, genetic algorithms, visualiza-
tion and algorithm animation. He published and presented his
work at international Computer Science conferences and gave
tutorials and lectures on Data Compression, Genetic Algorithms
and Algorithm Visualizations. Sami Khuri has been involved in
the design and implementation of interactive algorithm-specific
visualizations used in Operating Systems, Compiler Design, Data
Compression and Neural Network courses.
khuri@cs.sjsu.edu
http://www.mathcs.sjsu.edu/faculty/khuri/index.html

Part of this work was done during author’s sabbatical leave at the Depar-
tamento de Lengajes y Ciencias de la Computación, Universidad de
Málaga.



 

Visualisation of Software

 

2

 

INFORMATIK • INFORMATIQUE 2/2001

 

rithm visualizations is time-consuming and resource consum-
ing and includes at least the following five steps: analysis of
requirements, system design, implementation, testing, and
maintenance. Obviously, these stages will often overlap and
only a few systems pass smoothly through these steps. Testing,
for example, may reveal ambiguities in the design specifica-
tion, parts of which will have to be rewritten. Analysis of the
requirements is always the most important stage, for it is the
one that justifies the other four. Unfortunately, it is often the
one that is skipped. For education software visualizations, this
stage involves trying to provide questions, such as: Who will
use the system? How would it fit into existing curricula? What
would the system add to what could be done by other means?
Is the system technically feasible? In what follows, we bring to
the readers’ attention the important parts of the analysis of
requirements.

 

2.1 Users’ analysis

 

Understanding who the users are determines system’s
content, organization, breadth, depth, and information presen-
tation. Users of algorithm visualizations can be categorized
into four roles: student, educator, researcher or developer (it is
possible that one individual will assume more than one of these
roles). Another possible approach is to characterize users into
novice and experienced users. It is difficult to develop a system
suitable for both novice and experts. The needs of programmers
of different levels of expertise may not be satisfied by a single
system. Users at the beginning levels do not learn well by trial
and error (i.e. do not profit from “floundering” and trying to
find their own way to correct paths after following incorrect
ones for some time). They tend to have problems in mapping
the real world model onto a program and they are easily
distracted by motion and by extraneous detail. They easily form
misconceptions and need as many of the following design
features as possible:
• Graphical and consistent means of visualization control (e.g.

menus, buttons, etc).
• Similar instructional structure of all visualizations, such as a

number of worked examples showing how the algorithm can
be used (build-in default visualizations), as well as a graphic
support tool for working with new problems (e.g. the facility
to input new data sets, change parameters of the algorithm,
etc).

• Comprehensive help files with clear directions on how to use
the tool, descriptions of the algorithm’s steps, as well as the
organization of the interfaces.

• Short “quizzes” or similar opportunities for students to eval-
uate whether they have understood the material, and to exer-
cise the use of the visualization tools. 

Expert users on the other hand, will want to “play” with the
code, see how it works, and then modify, expand or otherwise
just experiment with it. For example, they might want to see
how they could integrate these modules with other tools. Thus,
animations designed for experts might require the ability to
move between algorithm-level and program-level displays
depending on their needs.

 

2.2 Needs Analysis

 

After determining the group of visualization’s users, it is very
important to address their needs. To do so, it is necessary to
realize the fact that different students have different learning
styles and strategies. Several factors such as locus of control,
motivation, and learners’ expectation, all play a significant role
in learning. Some students prefer the “hands on” approach,
where they are actively involved in the learning process. These
students tend to explore more and are generally more independ-
ent learners. However, some students prefer to be led through
the lesson, allowing the instructor, or the computer to control
the flow of the material. For the latter type of users, algorithm
visualizations should graphically demonstrate effects of the
algorithm on the data structures. It is also useful or even neces-
sary, to support the animation with explanatory cues in form of
short, on-screen, textual notes, and to provide control of the
speed at which the algorithm is animated. 

Support for users who prefer active interaction requires a
tool-set similar to that found in program development environ-
ments. In particular, the availability of “debugging” style soft-
ware to allow single step execution, breakpoint setting and the
monitoring of key variables is essential. The ability to simulta-
neously view the algorithm execution path and the data struc-
ture state is a crucial aspect of interactive observation.

Before implementing an algorithm visualization system, the
designer should also ask the following question: Do the users
need this information presented in this way? For example, an
instructor can illustrate the binary search algorithm by using a
phone book. In general, effort is wasted on visualizing simple
concepts or algorithms. For example, if the amount of data is
small, or the data structure is very simple, or the relationship of
objects is important but movement is not needed, then it is
better to use a static picture. But for a large amount of data, and
for complex data structures or when movement is needed to
show how the relationships between objects change over time,
animation is the right choice for the presentation of the algo-
rithm.

 

2.3 Task Analysis

 

When designing an algorithm visualization system, it is
important to note the system’s intended goals and select the
content accordingly. The user might use the system to create
new animations, interact with existing visualizations to under-
stand the behaviour of an algorithm, or visually debug pro-
grams. Each situation demands a different kind of visualization
system, and it is difficult to build the system that satisfies all of
them.

Traditionally, computer science instructors constructed visu-
alizations that were later used either as visual aids in lectures,
such as 

 

BALSA

 

 [Brown 88] or in closed laboratories, such as

 

GAIGS

 

 [Naps 90]. More recently, computer science educators
have advocated using algorithm visualization software, such as

 

XTango

 

, as the basis for visualization assignments, in which
students construct their own visualizations of the algorithms
under study [Stasko 97].

If a system is designed for classroom teaching it might inten-
tionally show algorithm-level displays only and avoid pro-



 

Visualisation of Software

 

INFORMATIK • INFORMATIQUE 2/2001

 

3

 

gram-level displays in order to keep the student’s minds
off implementation details. Systems designed for user’s
exploration might require the ability to change settings,
input different data sets, change speed, move one step
back, or move between algorithm-level and program-
level displays.

If novice users are expected to use the system to de-
sign their own visualizations, and if making animations
is difficult and tedious, then their effort and time is
wasted in low-level graphics programming. In one
study, students spent over 33 hours on average con-
structing single visualizations with 

 

JSamba

 

 [Hundhau-
sen 99]. The system designed for this purpose should
have a powerful editor allowing students to map graph-
ical objects to data structures automatically.

 

2.4 Information analysis

 

Information should be analysed to determine how
effectively it could be visualized. Viewers should be
able to forget about the technique of presentation and
concentrate instead on what is being taught. Without an appro-
priate set of visual conventions, such as one colour to denote
some items and another for other items, one may spend more
energy trying to figure out what the picture means than in trying
to follow the algorithm.

The graphical representation of information is heavily de-
pendent on the concept we would like to visualize. For exam-
ple, an important learning objective for students in understand-
ing the bubble sort algorithm is to first comprehend the central
metaphor of large values “bubbling up”. Another learning ob-
jective is to understand the core operation of swapping two data
values that sorting algorithms employ. It is often useful to pro-
vide multiple views of the same system in order to understand
a variety of characteristics of the data. Multiple views might
include a graphical view of changing program data with a cor-
responding view of the executing source code. For example, the
package shown in Figure 1 animates the quadtree compression
algorithm for bitmap images. The quadtree method scans the
bitmap, area by area, looking for areas filled with identical pix-
els. The package takes a bitmap as input, and constructs a
quadtree, where a node is either a leaf or has exactly four chil-
dren. The construction of the tree is done using a very interest-
ing recursive algorithm. The area on the left-hand side of the
application is used for displaying the bitmap image and steps
of the algorithm. The red lines show how the quadtree algo-
rithm partitions the image. A green rectangle indicates the
quadrant being evaluated by the algorithm. The window on the
right entitled “Quadtree” shows the building of the tree. A
useful extension to the multiple windows approach is that of
semantic zooming. The tool named “Tree” displays the whole
quadtree but on a smaller scale than the one depicted in the
“Quadtree” window. The current view of the “Quadtree”
window is always the part of the tree inside the red rectangle in
the display tool. Users can view other parts of the quadtree in
the “Quadtree” window by simply moving the red rectangle to
the desired location in the display tool. 

In general, there are two approaches to visualizing different,
but related algorithms. With the unified-view visualization, one
graphical representation is used for different algorithms of the
same class, and designers try to keep the individual adaptations
as small as possible. The advantages of this approach is time
saving since once the animation view has been established for
the first algorithm, the views can then be reused. Because of the
common base, the behaviour of related algorithms could be
compared more easily. Another possible way of animating
related algorithms is to use a unique view. In this approach, a
unique representation is developed for each algorithm. It takes
more time and effort to visualize algorithms this way because
the best representation must be found for each algorithm, and
the comparison of uniquely-visualized algorithms requires
additional work, but the advantages of this method are mean-
ingful graphical metaphors and increased memorability of the
visualization. Care should be taken in selecting graphical
metaphors. A given picture can mean several different things to
different viewers, and the meaning will change depending on
the relation to other simultaneously displayed images. 

Developers have several choices of graphic representation
[Cox/Roman 92]. In direct representation, data structures of an
algorithm are directly mapped to a picture (e.g. representing an
array as a collection of objects, where the index of each array
element is mapped to the object’s X-coordinate, while the value
of the element is mapped to the object’s Y-coordinate). In struc-
tural representations, some details or information are hidden
and the remaining information is directly represented. For
example, upon visualizing a computation running on a network
of processes, we might want to reduce the complex states of the
individual processes and simply show them as being in one of
two states: “active” or “inactive”. In this representation, we
conceal the other attributes of the processes. Some representa-
tions can be of synthesized nature, i.e., the information of inter-
est can be derived from the program data, but is not directly
represented in the program. Some examples include counting
the number of items already sorted or compression ratios. A

Fig. 1: Snapshot of the Quadtree package [Khuri/Hsu 00].



 

Visualisation of Software

 

4

 

INFORMATIK • INFORMATIQUE 2/2001

 

slightly different type of information representation is that of
explanatory nature. In this type of representation, visual events
have no counterparts in the underlying algorithm. They are
added to enhance the presentation. Their goal is to communi-
cate the implications of a particular computational event or to
focus the viewer’s attention. 

Some of the many ways of representing information is by
using shape, size, colour, texture, and arrangement of objects,
sound, and 3D. Colour can be used to call attention to specific
data, identify elements or structures, depict logical structure,
increase the number of dimensions in coding the data, and
highlight relationships. Although, colour can be a very power-
ful way of representing the information, some caution must be
taken. With respect to colour, it seems best to be conservative.
Only four distinct colours should be appropriate for novice
viewers. This allows extra room in short-term memory (about
20 seconds), which can store up to five words or shapes, six let-
ters, seven colours and eight digits. The same colour should be
used for grouping related elements. It is important to be
complete and consistent. For example, command and control
colours in menus should not be used for information coding
within a work area unless a specific connection is intended.
Similar background colours of related areas can orient the
viewer to understand the conceptual linking of the two areas.

Sound is another interesting area of research in information
visualization. It is a useful complement to visual output
because it can increase the amount of information communicat-
ed to the user or reduce the amount of information the user has
to receive through the visual channel. Although not suitable for
conveying exact values, auralization can indicate trends and
increase the number of dimensions capable of being presented
simultaneously. 

 

2.5 Scope Analysis

 

The scope can range from single-purpose visualizations that
illustrate one algorithm or a group of related algorithms in
detail, to specialized systems that concentrate on algorithms in
certain fields of computer science, such as graph algorithms
and finally, to general purpose systems. The latter can (ideally)
animate any algorithm. The greater the number of algorithms
that can be animated, the more desirable the result. See [Khuri
00] for a collection of links to different algorithm visualization
systems. Before embarking on developing a general-purpose
system, one should consider that increased flexibility results in
increased complexity. In general, systems that restrict them-
selves to animating only algorithms in one field, such as
geometrical algorithms, might not be able to easily represent
algorithms in other fields. On the other hand, specialized pack-
ages can be polished to make pleasing, informative visualiza-
tions of frequently used objects. Some of the recommendations
for the designers are:
• Design small first. Don’t attempt to provide everything

possible in the beginning. Provide what you can that is ben-
eficial to the user, visually attractive, and is of high quality. 

• Plan a phased growth. The visualization might grow and
change over time. Make sure to plan for growth by using
object-oriented design and carefully documenting the pro-

grams. Some of the algorithm-specific visualizations might
not allow adding new features. Plan to add new features over
time and make upgrades publicly available.

 

2.6 Resource analysis

 

Remember that design takes longer than expected. Designing
visualizations is not simple, especially when the designer is
concerned with more than just the visualization appearance.
Visualizations places great demands on computer resources,
such as CPU speed, monitor size and resolution, RAM and disk
memory sizes, networking, audio and video input and output,
colour display panel and projection, and other input and output
equipment needed. If visualization will be available over the
Internet, they will need large amounts of storage space, and
more importantly, a high-speed connection to the net.

Another purpose of the resource analysis is to select the spec-
ification method for designing new algorithm visualizations.
Some of the possibilities are annotation, declaration, manipula-
tion, and predefinition. In an annotation method, important
steps of an algorithm are annotated with interesting events. The
interested events call graphical operations which execute
animations (move rectangles, change colours, etc.). When
these program points are reached during execution, events are
created and then forwarded to different views of the algorithm
animation system. These views represent the interesting events
by appropriate animations, as in 

 

BALSA

 

 [Brown 88]. In

 

PAVANE

 

 [Cox/Roman 92], for example, the user can specify a
mapping between the program’s state and the final image arbi-
trarily or by declaration. The changes in the state will be imme-
diately reflected in the image. This approach provides greater
abstract capabilities, but this increased power also requires
more processing to map the program to the final image. One of
the interesting, but rarely found systems, is the one that allows
the creation of new visualizations through manipulation (or
animation by demonstration). The user can specify visualiza-
tions through the use of examples. The system attempts to
capture the gestures used by the animator as she directly
manipulates an image and ties these gestures to specific
program events. This approach suffers from the difficulty of
specifying the exact relationship between the gesture and the
program event. The predefinition method is often used for
application-specific visualizations, such as Quadtree in Figure
1, and employs a fixed or highly constrained mapping. There is
little or no control over what is visualized and in the way the
information is presented.

 

Concluding Remarks

 

In this paper, the preliminary design phase: the analysis of
requirements is discussed. Many algorithm visualizations are
being designed without paying too much attention to the needs
of users, their tasks, and their characteristics. Creating visuali-
zations requires substantial time and effort. Mapping an algo-
rithm to an animated representation is a non-trivial problem; it
requires careful thought and knowledge of a particular algo-
rithm animation programming framework. There are many
underutilized techniques for creating effective algorithm visu-
alization, such as sound, 3D, and artificial intelligence, which

3



 

Visualisation of Software

 

INFORMATIK • INFORMATIQUE 2/2001

 

5

 

will continue to spark the creativity of the developers in the
years to come. But the main problem still remains the same,
there is no single algorithm visualization, specialized or gener-
al-purpose, that can satisfy all kinds of users, all kinds of tasks
and can be used in all kinds of environments. Without the care-
ful analysis of the users’ needs, tasks, scope, information, and
resources, the effort put in developing a visualization package
will probably be wasted. Readers interested in obtaining more
information about designing effective algorithm visualizations
are referred to [Khuri 00] and [Stasko 98].

 

References

 

[Brown 88]
M. Brown: “Algorithm Animation”, MIT Press, Cambridge, MA.
1988.

[Cox/Roman 92]
K. Cox and G. Roman: “Abstraction in Algorithm Animation”,
Technical Report WUCS-92-14, School of Engineering and
Applied Science, Washington University in St. Louis, 1992.

[Gallagher 95]
R. Gallagher: “Computer Visualization: Graphics Techniques for
Scientific and Engineering Analysis”, CRC Press, 1995.

[Hundhausen 99]
C. D. Hundhausen: “Toward Effective Algorithm Visualization
Artifacts: Designing for Participation and Communication in an

Undergraduate Algorithms Course”, Ph.D. Dissertation, Univer-
sity of Oregon, June 1999.

[Khuri/Hsu 00]
S. Khuri and H. Hsu: “Interactive Packages for Learning Image
Compression Algorithms”, Proceedings of the 5th ITiCSE, 2000,
pp. 73–76. 

[Khuri 00]
S. Khuri: “Designing Effective Algorithm Visualizations”, Invit-
ed Lecture, Program Visualization Workshop, Porvoo, 2000,
available at http://www.mathcs.sjsu.edu/faculty/khuri/invit-
ed.html

[McCormick et al. 87]
B. H. McCormick, T. A. DeFanti and M. Brown: “Visualization
in Scientific Computing”, Report of the NSF Advisory Panel on
Graphics, Image Processing and Workstations, 1987.

[Naps 90]
T. L. Naps: “Algorithm Visualization in Computer Science Labo-
ratories”, Proceedings of the ACM SIGCSE, 1990.

[Petre et al. 98]
M. Petre, A. Blackwell and T. Green: “Cognitive Questions in
Software Visualization”, in Software Visualization, MIT Press,
1998, pp. 453–480.

[Stasko 97]
J. T. Stasko: “Using Student-Built Algorithm Animations as
Learning Aids”, Proceedings of the ACM SIGCSE, 1997.

[Stasko 98]
J. T. Stasko: editor, Software Visualization, MIT Press, 1998.


