
Visualizing the CPU Scheduler and Page Replacement Algorithms

Sami Khuri

San Josh State University
Dept. of Math. and Computer Science

San Jose, CA 95192-0103, USA

khuri@cs.sjsu.edu

Abstract
In this paper, we present two packages that simulate the
multilevel feedback queue scheduling algorithm for a single
CPU, and five page replacement algorithms that are used in
the context of memory management. The paper gives a
brief description of the interactive, self-paced packages and
explains how we use them in Operating System courses. We
also highlight the merits of the packages and the benefits to
the students derived from our Java written simulations.

1 Introduction
The advent of extensive access to the World Wide Web and
Java applets have boosted the use of graphical visualization
and animation to convey the dynamic behavior of computer
algorithms [4]. The Web has numerous repositories of the
animation of different traditional algorithms encountered in
CSl, CS2, and data structures and algorithms courses, such
as sorting, searches, traversals of trees and other graph
algorithms. For many types of algorithms, animation
enhances learning and understanding [2]. It is our belief
that many algorithms encountered in operating systems fall
under this category.
The main purpose of this work is to present two packages,
MLFQ that simulates the multilevel feedback queue
scheduling algorithm for a single CPU, and PAGE, a
collection of five page replacement algorithms that can be
used in Operating Systems courses. Most modem operating
systems use intricate process scheduling algorithms that are
not very easy to explain. Understanding each part of the
scheduling separately is straightforward, but grasping the
interaction between the different components is more
challenging. We have designed, written and used in our
classes a package, MLFQ that simulates the multilevel
feedback queue scheduling algorithm for that purpose. We

Permission to make dlgital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copses are not made or distributed for proflt or commercial advan-
tage and that copies bear this notice and the full atauon on the fwt page.
To copy otherwise. to republish, to post on ?.ewers or to
redistribute to list?., requires prior specific permission and/or a fee.
SIGCSE ‘99 3/99 New Orleans, LA, USA
0 1999 ACM l-581 13.085-6/99/0003...$5.00

Hsiu-Chin Hsu

San Jose State University
Dept. of Math and Computer Science

San Jo&, CA 95192-0103, USA

hsu0832@sundance.sjsu.edu

have also written PAGE, the simulation of algorithms for
virtual memory, and have successfully used it in our
courses. Both packages, written in Java, are highly
interactive and user-friendly. By experimenting with MLFQ
and PAGE, students get a full appreciation of all the
intricate details that occur during process scheduling and
page replacements.
In the next section, we describe MLFQ that simulates the
multilevel feedback queue and show how we use it in our
Operating Systems class. In Section 3, we give a brief
description of PAGE, the package that simulates five page
replacement algorithms. We conclude with some additional
remarks and benefits of our packages.

2 The Multilevel Feedback Queue
Unix and Windows NT use a strict, multilevel feedback
queue scheduling algorithm. Modem operating systems
support up to 160 queues in which a process is placed,
depending on its priority [6]. The scheduler can be priority-
preemptive, where a running process can be preempted
from the CPU by another process that has a higher priority,
or non-priority preemptive where a process is allowed to
complete its time-slice at the CPU.
A single process scheduler should satisfy the following
scheduling objectives:
.

.

.

.

.

.

.

.

0

.

.

.

be fair
maximize throughput
maximize the number of interactive users receiving
acceptable response times
be predictable
minimize overhead
balance resource utilization
achieve a balance between response and utilization
avoid indeftite postponement
obey priorities
give preference to processes that hold key resources
give a lower grade of service to high-overhead
processes
degrade gracefully under heavy loads.

There are various scheduling algorithms, such as round
robin (first-in first-out, where each process has a quantum),

.

227

shortest job first, priority scheduling, and the multilevel
feedback queue. Although various modern operating
systems have adopted the multilevel feedback queue model
for their short-term CPU scheduler, they do not necessarily
have the same characteristics. Each scheduler needs to
define:

l the number of queues
l the scheduling algorithm for each queue
l the conditions for increasing/decreasing a process’

priority
. the rules for deciding which queue a process will first

enter.
While these concepts are covered in class in traditional
lecture form, the students can get a better understanding of
the different stages of the scheduler and its intricacies
through a simulation of the CPU scheduler.

The package we wrote in Java and use in our classes,
MLFQ, simulates the CPU scheduler by using four queues
and two different kinds of jobs: regular and batch. It is
highly interactive and user-friendly.

As can be seen in Figure 1, under “Options” users can click
on “Choose Demo Files” and choose among four available
input data tiles, or enter their own input data. They can also
customize their simulation by adjusting:

. the process selection type:

1. priority preemptive: If a job becomes ready
while another job with lower priority is
running, the running job is stopped
(preempted) and the new job is scheduled.

2. non-priority preemptive: a process executes
until either it uses its entire quantum or it
blocks on I/O (finishes its CPU burst).

l the number of processes

l the type of each process (regular or batch), its arrival
time, and its execution trace (CPU bursts)

. the I/O request time (the number of units a process is
blocked on I/O)

. the time quantum of each round robin queue

The “Trace” and “Run” buttons control the execution of the
program. The user can choose between a step-by-step
approach in order to understand the details of the algorithm,
by repeatedly clicking on “Trace”. Alternatively, the user
can choose “Run” and have the simulator go through the
steps and display the CPU schedule for the input data.

In the simulation of Figure 2, we have chosen to run the
first demo file which is summarized in the lower left hand
comer under “Input Data”. We note that the input tile here
is different than the one found in Figure 1. Process A is a
regular process. It arrives at time 2 and requests a burst of 5
units of CPU time, then blocks on I/O, requests a second
burst of 5 units, blocks on I/O again, and then requests one
last burst of 5 units. In other words, we assume that
demands for two consecutive bursts always include
blocking on I/O between the CPU requests. Process B is
also regular, arrives at 8, and has three CPU bursts of 5, 6
and 3 units, and so on for the remaining three processes, C,
D, and E.

Figure 2 also shows the quanta settings that were chosen for
queues Ql, Q2, and Q3 as well as the process selection type
(priority preemptive or non-priority preemptive) and the
length of time a process is blocked on I/O. As can be seen
in the upper left comer of Figure 2, the simulation we run is
priority-preemptive, a process blocks on I/O for 5 units of
time, and the quanta of Ql, Q2, and Q3 are 6, 4, and 3,
respectively.

Figure 2 gives a snapshot of the scenario at time 34. In the
window showing the queues, we have By andCy, in Ql.

The superscript represents the time at which the
corresponding process was placed in the queue. The
subscript represents the remaining CPU burst requests [3].
At time 34, process B has just been scheduled and no

.

228

process is blocked on I/O. This information can be seen in
the three boxes in the top left comer of Figure 2, and in the
“Message” box. Process B waited in Ql for two units of
time (34 - 32) before being scheduled. As can be seen in
the tracing window in the right half of Figure 2, process B
has already completed its first CPU burst of 5 units between
8 and 13, and the second CPU burst of 6 units between 21
and 27. Note that, at time 34, process C has just come back
from I/O and is now in Ql. Process D has been waiting for
its turn in Q4 since its arrival at time 15. Process A has just
finished executing its third CPU burst and is done, while
process E is neither in the queue window nor in the tracing
window simply because it will arrive 6 units (40 - 34) later.

We note that the message window and I/O box will always
record all processes that are blocked on I/O. The tracing
window has room for only one process: the most recent
one.

At the end of the simulation (see Figure 3), a “Statistics
Result” window pops up and gives the response time,
waiting time, process turnaround times and overall
turnaround times and the CPU utilization for this
simulation.

We note that this is a simple example where no process is
preempted by another of higher priority.

As mentioned above, we use MLFQ for in-class
demonstrations. The “Trace” option allows to pause the
simulation, explain the details and answer students’
questions. The simulation has also proven to be a valuable
tool for open laboratory exercises. Students can experiment
with MLFQ at their own pace and compare the performance
of the scheduler for various values of the quantum. They
can see for example, that if the quantum is too high, the
performance of the round robin queue degrades into that of
a first-in first-out queue.

Visualization and simulation tools have been proven very
valuable but students learn even better when they write their
own implementations of the algorithms studied in class.
When we teach our undergraduate Operating Systems
course at San Jose State University, we reinforce the
concepts learnt in the classroom by giving a programming
term project. Simulating the CPU scheduler is an example
of a good topic for term projects. In the next section, we
introduce the project we gave in the Fall’97 semester,
where the students were given the choice between C and
C++ for the implementation.

In this project the students are asked to implement the
strict, priority preemptive multilevel feedback queue
scheduling algorithm with four queues (Ql, Q2, Q3, Q4)
for a single-CPU system. The program should output the
response time, the turnaround time, the waiting time for
each process and the overall turnaround time (makespan)
for the given input data.

where each line represents a process (number), type (r
or b: for regular or batch), arrival time (integer value),
and CPU bursts (integer values separated by spaces).

For extra credit, students are asked to study the effect of
several parameters used with the multilevel feedback queue
scheduler. The program should allow the user to choose
between priority preemptive and non-priority preemptive.
They are also asked to write a discrete simulation to study
the performance of the scheduler under different quanta and
different context switching times of 0.0005, 0.005, 0.01,
and for time quanta of a) 3, 4, 6; b) 4, 8, 10 and c) 5, 8, 12.
Needless to mention that MLFQ helped our students in the
design, implementation and especially testing of their
projects.

In the next section, we introduce PAGE, a package that
contains more operating systems algorithms used for virtual
memory management.

3 Page Replacement Algorithms
Most virtual memory systems use paging, where the virtual
address space is divided into pages and the corresponding
units in physical memory are called frames. The algorithms
we implemented in PAGE are well explained in Tanenbaum
et al. [5], which is the book we use.

When a page fault occurs and physical memory is full, the
operating system removes a page from memory and moves
in a new one. But which page should be chosen for
removal? The optimal replacement algorithm would want
us to remove the page that will not be used for the longest
period of time. This algorithm guarantees the lowest
possible page-fault rate for a fixed number of frames. But
this algorithm is unrealizable since it would require from
the operating system to have a crystal ball to be able to see
the future and to determine which page will remain
unreferenced for the longest period of time. Most of the
existing page replacement algorithms are approximations of
the optimal algorithm.

PAGE simulates the five page replacement algorithms
depicted in Figure 4, which we now briefly describe.

In order to replace the page that has been in memory the
longest, we associate with each arrival the time when that
page was brought into memory. When we have a page fault
and a page must be replaced, we choose the oldest one.
With First-In First-Out (FIFO), the operating system
maintains a queue, with the oldest page at the head of the
queue and places the most recent arrival at the tail of the
queue. On a page fault, the page at the head of the queue is
removed and the new page is added at the tail of the queue.

The Second Chance algorithm is a modification of FIFO
and checks the referenced bit of the page before swapping it
out of memory. If the referenced bit is set (=l), then the bit
is cleared (=O), the page is put at the end of the FIFO
queue, and its load time is updated as though it had just
arrived in memory. In other words, the page is given a
second chance.

To avoid moving too many pages, the Second Chance
algorithm can be implemented by using a circular list. In
Figure 5, we assume that physical memory (main memory)
has 8 frames (see the size of the clock) and the virtual
address space has 16 pages (numbered O-15). As can be
seen from the figure, students can input a list of page
references in three different ways. They can choose among
the 16 page references one by one, they can type their
references in the text field, or they can randomly generate
an input list by repeatedly clicking on “Random”.

The scenario in Figure 5 illustrates how the Clock page
replacement algorithm handles a page replacement. The
algorithm has already taken care of page references 2, 11,
6, 4, 8, 6, 14, 7, 11, 5, 9, 5, 8 from the input page
references. These requests give rise to 9 page faults and
result in the clock depicted under “Previous State” in Figure
5, where the clock arm points to the frame containing page
11. The next request of page 10 is not in physical memory.
A message “Page fault occurs” is displayed, as can be read
in Figure 5, and a page has to be replaced. The algorithm
inspects the frame containing page 11, clears its R bit (sets

230

the referenced bit’s value to 0) and advances to the frame
containing page 6. Likewise, here too, the R bit is cleared
and the clock arm advances to the frame containing page 4.
Since the referenced bit of the frame containing page 4 is
zero, that page is evicted and is replaced by page 10. We
now have the clock depicted under “Current State” in
Figure 5 and the page fault count is now 10.

When a page fault occurs, the Least Recently Used page
replacement algorithm (LRU) evicts the page that has been
inactive (unreferenced) for the longest time. LRU can be
implemented with hardware. The Matrix Algorithm of
Figure 6 maintains an n x n bit matrix, where n is the
number of frames. Thus, if we consider the settings we have
with the Clock algorithm, we have an 8 x 8 bit matrix that is
initialized to zero entries. When a page in frame k is
referenced, the hardware first sets all bits of row k to one,
then sets all bits of column k to zero. At any given instant,
the row whose binary value is lowest contains the page that
is the least recently used and is the one to be evicted when a
page fault occurs. If we consider the same scenario as the
one we studied with the Clock algorithm, then frame 3 has
the lowest binary value (zero) and therefore its content,
page 4, is evicted and replaced by page 10, as can be seen
in Figure 6.

LRU using Aging Algorithm mentioned in Figure 4 is a
software implementation of the LRU.

As is the case with MLFQ, we use PAGE during class time
to demonstrate the workings of the various algorithms. The
students also experiment with it in an open laboratory
environment.

4 Conclusion
In this work, we present two packages MLFQ and PAGE
that we use in our Operating Systems classes to explain the

CPU scheduler and page replacement algorithms. The
packages are valuable visualization tools for classroom
lectures. Instead of tracing the algorithms by hand, or by
overlaying transparencies, one can step through the
programs, pause, consult “Previous State” snapshots, and
answer questions. We also use the packages in an open lab
environment, where students gain a better understanding of
the workings of the algorithms by practicing at their own
pace. They can experiment and input their own data, set
their own parameters and compare the results. MLFQ is far
from matching the large number of queues found in real
operating systems, but nevertheless, it is closer to reality
and yet not too large for tracing through the process with
pencil and paper. We are aware that a four-queue model
with two kinds of jobs is a far cry from the 160 priority
levels (60 levels for real time, 40 for kernel and 60 for time
shared processes) in UNIX SVR4 [6], or the 16 real-time
priority classes and 16 variable priority classes that
comprise the 32 multilevel feedback queues of Windows
NT [1]. Nevertheless, we believe that MLFQ and PAGE do
assist students in understanding the workings of CPU
schedulers and page replacement algorithms implemented
by modem operating systems, such as UNIX SVR4’s two-
handed clock page replacement algorithm. Moreover, our
packages are easy to use and provide immediate feedback.
The graphical interface is very efficient and enables the
users to visualize every step of the algorithm. Help files are
incorporated in the packages and contain information about
algorithms and their implementation.

