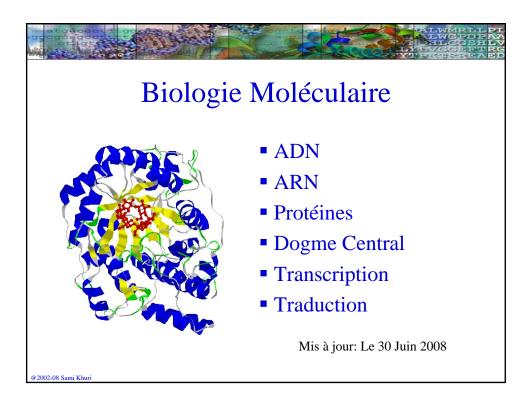
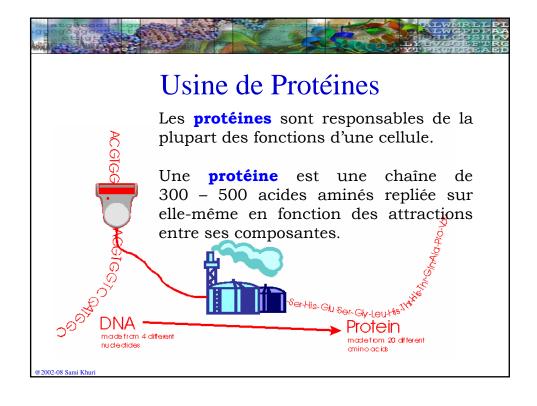
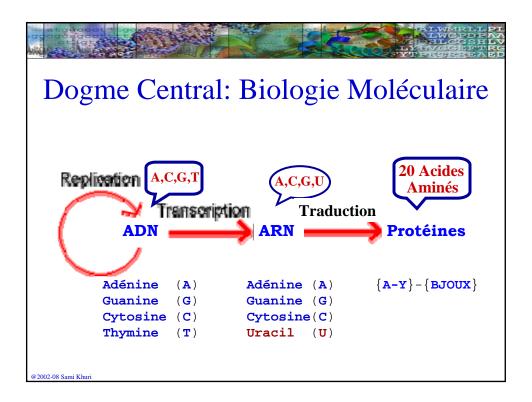


Sami Khuri
Department of Computer Science
San José State University
khuri@cs.sjsu.edu


@2002-08 Sami Khur




Plan du Cours

- Biologie Moléculaire et Organismes Modèles
- Qu'est-ce que la Bioinformatique
- Alignement de deux séquences
- Bases de données
- Alignement multiple de séquences
- Arbres de Phylogénie

@2002-08 Sami Khur

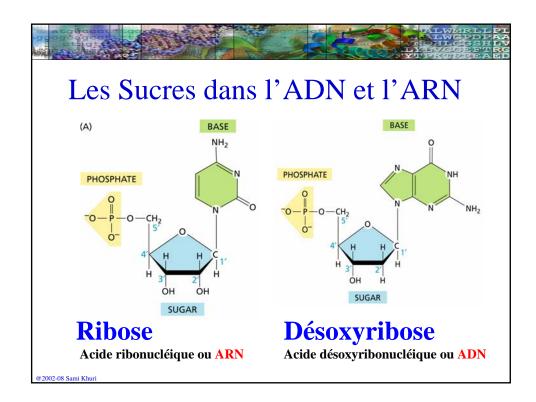
LYTYCE FTRE

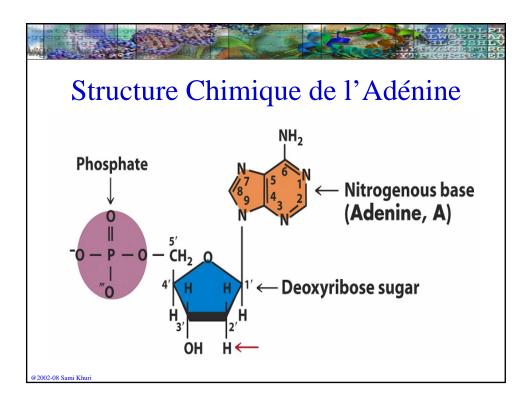
Deux Grandes Catégories de Cellules

Les procaryotes

- Pas de compartiment cellulaire
- L'ADN est dans le l'ADN cytoplasme de la cellule Organismes
- Organismes unicellulaires
- Eubactéries
- Archéobactéries

Les eucaryotes


- Compartiments cellulaires
- Noyau : une membrane de l'ADN
- Organismes uni/pluricellulaires
- Unicellulaires : les levures
- Pluricellulaires : Animaux et végétaux


2002-08 Sami Khur

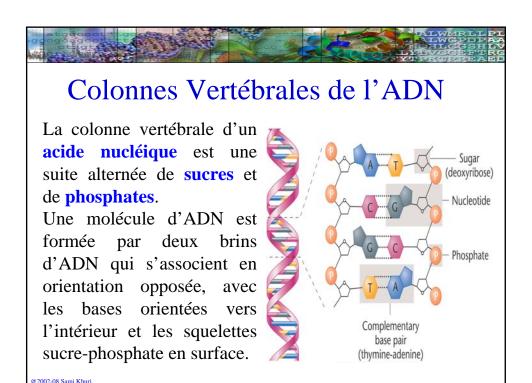
Les Acides Nucléiques

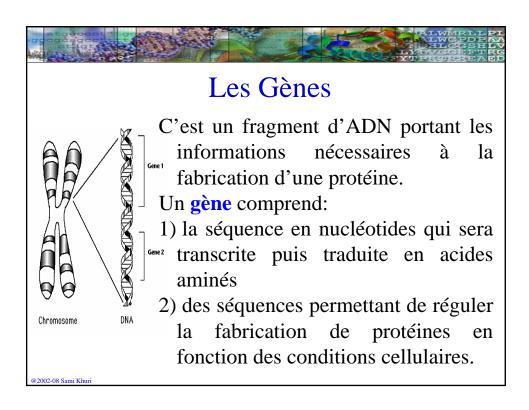
- Deux types d'acides nucléiques:
 - ADN (acide désoxyribonucléique), support du génome
 - ARN (acide ribonucléique)
- Molécule intermédiaire qui permet le passage du gène à la protéine (ARN messager: ARNm)
- Molécules impliquées dans la synthèse des protéines (ARN de transfert: ARNt et ARN ribosomal: ARNr)
- Polymères de nucléotides
 - 4 nucléotides différents: A, T, G, C
 - la séquence en nucléotides représente l'information génétique

@2002-08 Sami Khur

L'ADN

- L'ADN est une molécule que l'on trouve au cœur de chacune de nos cellules.
- L'ADN est formée de deux chaînes entrelacées; en forme de double hélice.
- L'ADN est composée de 4 bases chimiques différentes:

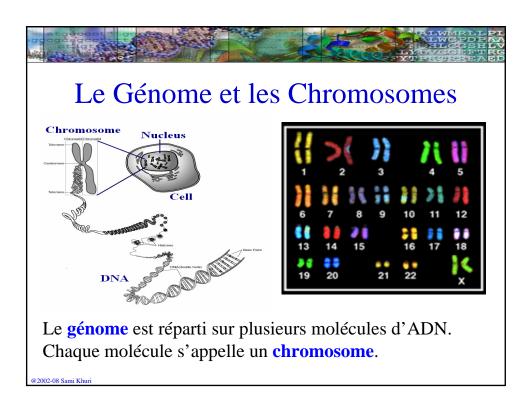

```
Adénine (A) Cytosine (C)
Guanine (G) Thymine (T)
```

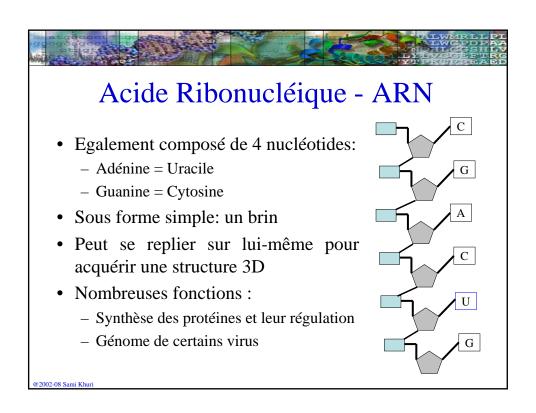

2002-08 Sami Khuri

La Double Hélice d'ADN

- Les 2 brins s'enroulent en double hélice.
- La double hélice est stabilisée par des liaisons hydrogène qui s'établissent entre les bases : les bases A forment des paires avec les bases T, et les bases C avec les bases G.
- Les 2 brins d'ADN sont des séquences inverses complémentaires.

@2002-08 Sami Khur

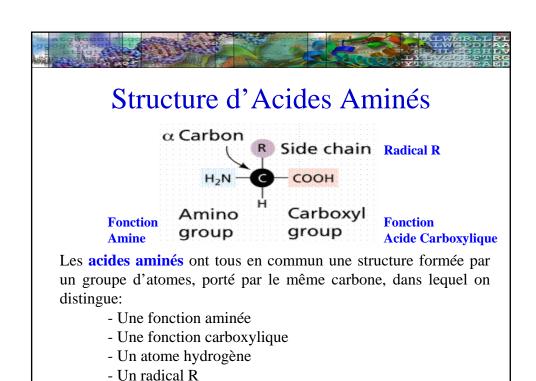




Le Génome

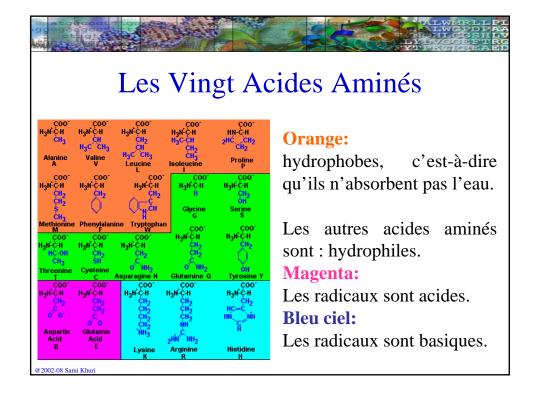
- Le **génome** est l'ensemble de l'information génétique d'un organisme.
- Une copie du **génome** est présente dans chacune de ses cellules.
- Le **génome** est transmis de génération en génération.
- Le **génome humain** a environ 30,000 gènes.

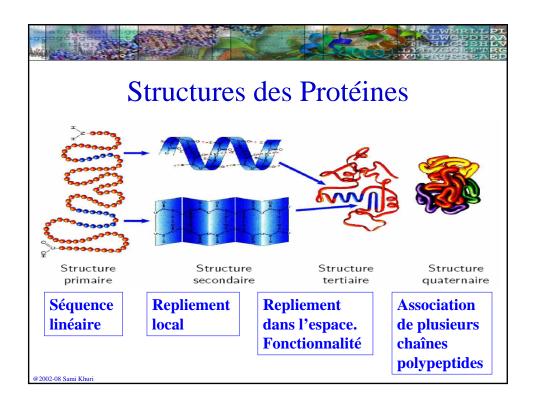
2002-08 Sami Khuri

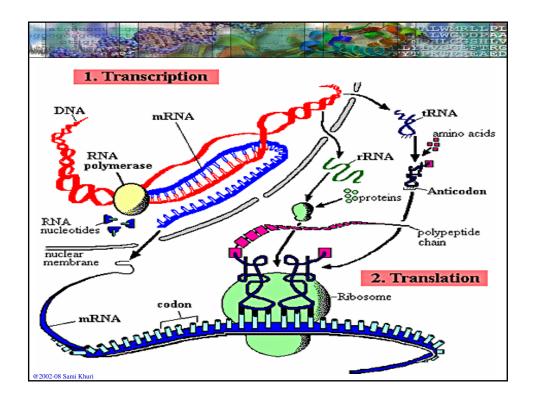


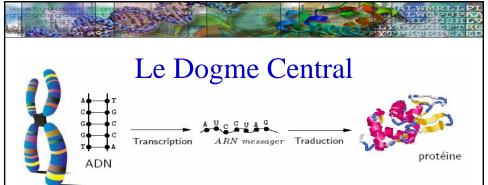
Acides Aminés et Protéines

- Il existe 20 acides aminés pour la synthèse des protéines.
- La structure tridimensionnelle et la composition de la surface déterminent la fonction d'une protéine.
- La formation d'un complexe moléculaire (assemblage de plusieurs molécules) peut être nécessaire à l'acquisition d'une fonction.

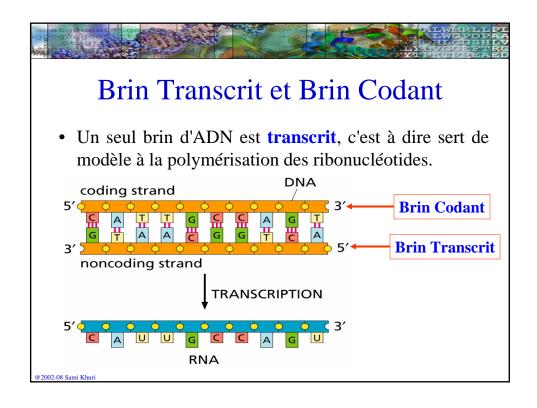

@2002-08 Sami Khur

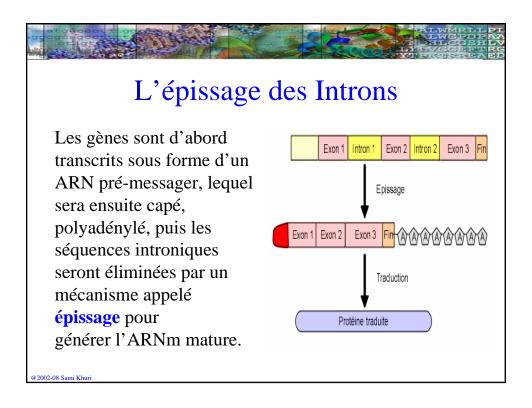



Propriétés Chimiques et Radical R


- C'est le radical R qui détermine les propriétés chimiques de chaque acide aminé.
- Les protéines, appelées également polypeptides, sont généralement constituées de 50 à 1000 acides aminés.
- La diversité des protéines résulte des différentes combinaisons linéaires des 20 acides aminés.

@2002-08 Sami Khui



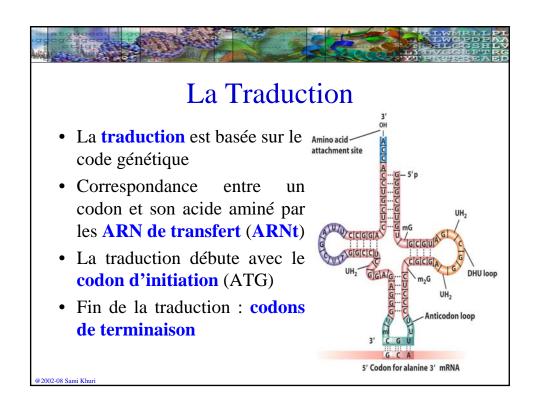


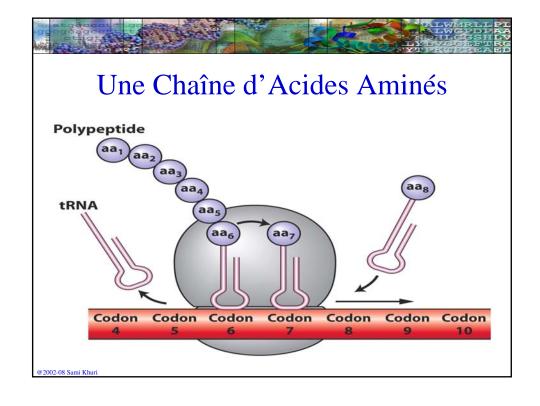
- La **transcription** est la synthèse d'une molécule d'ARN complémentaire (**ARN** messager) à une séquence d'ADN.
- La transcription est initiée par une polymérase ARN.
- Chez les eucaryotes, l'ARNm subit une maturation avant la traduction.
- Les **ARNm** sont traduits tels quels chez les procaryotes.

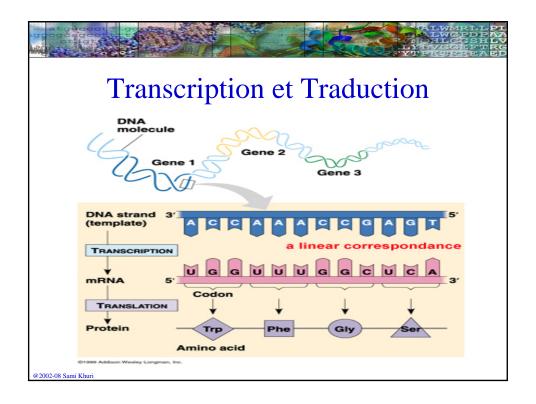
@2002-08 Sami Khur

Epissage Alternatif

- Pour un même **gène**, et dans un même organisme, l'élimination des introns peut être différente selon la cellule concernée.
 - Ainsi, pour un même gène, l'ARNm sera différent et donnera naissance à une protéine différente.
- C'est un phénomène d'économie pour la cellule, omniprésent chez tous les eucaryotes pluricellulaires.

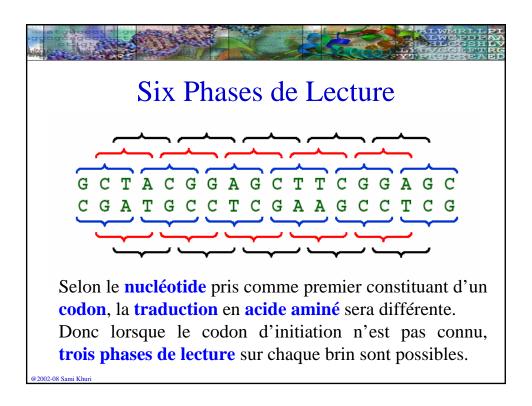

@2002=08 Sami Khur

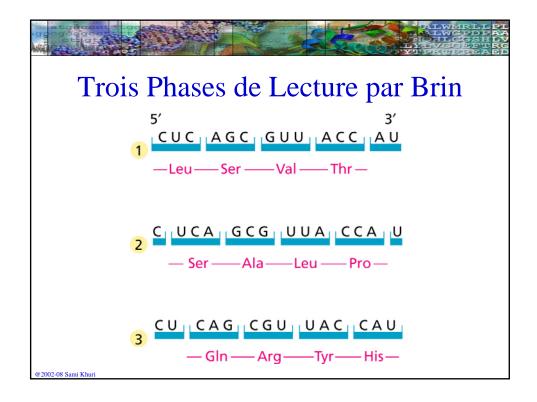

Traduction: Synthèse Protéique


- Processus permettant la synthèse d'une chaîne polypeptide (protéine) à partir d'un brin d'ARN messager.
- L'ARNm est traduit en protéine
- La **traduction** a lieu au niveau des ribosomes dans le cytoplasme.

@2002-08 Sami Khur

			L	æ	C	O	de	(Génét	ique		
Première lettre	Deuxième lettre								Troisième	Alanine	Ala A	Α
	U		С		Α		G		lettre	Arginine	Arg 1	${\mathbb R}$
U	uuu	Phe	UCU	Ser	UAU		UGU	Cys	U	Asparagine	Asn	И
	UUC		UCC	Ser	UAC	Tyr	UGC		С	Acide aspartique	Asp	D
	UUA		UCA		UAA	Stop	UGA	Stop	Α	Cystéine	Cys	C
	UUG	Leu	UCG	Ser	UAG		UGG	Trp	G	Glutamine	Gln	_
с	CUU		CCU		CAU	His	CGU	Arg	U	Acide glutamique		
	CUC	Leu	CCC	Pro	CAC		CGC		С	Glycine	Gly	
	CUA		CCA		CAA	Gln	CGA	Arg	A	Histidine Isoleucine	His Tle	H T
	CUG	Leu	CCG	Pro	CAG		CGG		G	Leucine	Leu	_
A	АШ		ACU		AAU	A Lys	AGU	Ser	U	Lysine	Lvs	_
	AUC	Пe	ACC	Thr			AGC		C	Méthionine	Met	
									_	Phénylalanine	Phe	
	AUA		ACA	Thr	AAA		AGA Arg	Α	Proline	Pro	_	
	AUG	Met			AAG		AGG		G	Sérine	Ser	s
G	GUU	Val	GCU Ala	Ala	GAU	Asp	GGU	Gly	U	Thréonine	Thr	т
	GUC				GAC		GGC		С	Tryptophane	Trp	W
	GUA	Val	GCA	Ala	GAA	Glu	GGA	Gly	Α	Tyrosine	Tyr	Y
	GUG	val	GCG	Ala	GAG		GGG		G	Valine	Val.	37





Phase Ouverte de Lecture

- Phase Ouverte de Lecture (Open Reading Frame, ORF):
- C'est le **codon d'initiation Met** qui indique le démarrage de la protéine et définit la phase de lecture.
- Pour que cette phase de lecture soit correcte, il faut aussi trouver à une certaine distance, multiple de trois, un codon STOP.
- Une séquence codante (CDS, région traduite en protéine) commence par le codon initiateur, et se termine par un des trois codons STOP.

@2002-08 Sami Khur

Organismes Modèles

- Un **organisme modèle** est un organisme qu'on étudie en détail pour comprendre un phénomène biologique particulier.
- Pourquoi organisme modèle? C'est un point de départ qui permet d'élucider le fonctionnement d'autres modèles.
- Pourquoi est-ce possible? L'évolution utilise à nouveau les mêmes principes biologiques fondamentaux et conserve les voies métaboliques.

@2002-08 Sami Khui

La Levure de Boulangerie

• La **levure** de boulangerie: *Saccharomyces cerevisae*

- Environ 38% de ses protéines ont un équivalent chez les mammifères.
- Grâce à cet organisme, les biologistes ont découvert les mécanismes fondamentaux du contrôle de la division cellulaire et de la réparation de l'ADN.

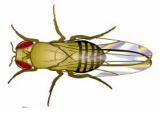
2002-08 Sami Khur

Le Ver Nématode

• Le ver nématode:

Caenorhabditis elegans

 Un tiers de ses protéines ressemble à celles des Mammifères


- Par exemple, les biologistes utilisent les vers nématodes dans la recherche des médicaments contre le diabète.

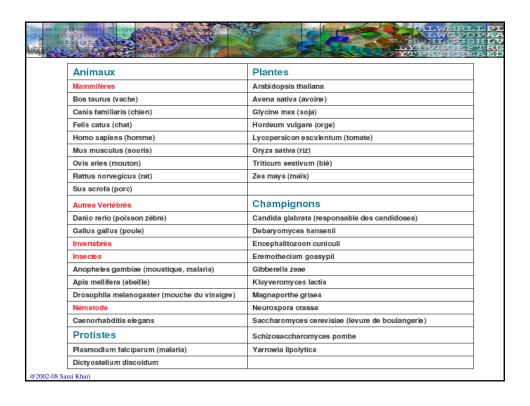
@2002-08 Sami Khui

La Mouche du Vinaigre

• La mouche du vinaigre *Drosophile melanogaster*

- Environ 50% de ses protéines
 ressemblent à celles des mammifères
- Un grand pourcentage des gènes connus de maladies humaines ont un gène homologue chez cette mouche. Exemple: gène humain p53.

@2002-08 Sami Khuri


La Souris

• La souris

Mus musculus

- Plus de 90% de ses protéines ressemblent à celles des humains.
- La plupart des médicaments sont testés sur des mammifères: généralement la souris.

@2002-08 Sami Khuri

Identification d'ADN

- Identifier les suspects dont l'ADN pourrait correspondre à celui trouvé sur les lieux d'un crime.
- Innocenter des personnes accusées à tort.
- Etablir la paternité et autres liens familiaux.
- Trouver un donneur d'organes compatible avec le receveur.

@2002-08 Sami Khur

Louis XVII

Louis XVII: fils de Louis XV1 et Marie-Antoinette Décédé de tuberculose en 1795 à l'âge de 12 ans.

@2002-08 Sami Khur

