
Quick-R: Tree-Based Models

http://www.statmethods.net/advstats/cart.html[5/16/2011 10:39:34 AM]

Tree-Based Models

Recursive partitioning is a fundamental tool in data mining. It helps us explore the
stucture of a set of data, while developing easy to visualize decision rules for predicting
a categorical (classification tree) or continuous (regression tree) outcome. This section
briefly describes CART modeling, conditional inference trees, and random forests.

CART MODELING VIA RPART

Classification and regression trees (as described by Brieman, Freidman, Olshen, and
Stone) can be generated through the rpart package. Detailed information on rpart is
available in An Introduction to Recursive Partitioning Using the RPART Routines. The
general steps are provided below followed by two examples.

1. GROW THE TREE

To grow a tree, use
rpart(formula, data=, method=,control=) where

formula is in the format
outcome ~ predictor1+predictor2+predictor3+ect.

data= specifies the dataframe

method= "class" for a classification tree
"anova" for a regression tree

control= optional parameters for controlling tree growth. For example,
control=rpart.control(minsplit=30, cp=0.001) requires that the
minimum number of observations in a node be 30 before
attempting a split and that a split must decrease the overall lack
of fit by a factor of 0.001 (cost complexity factor) before being
attempted.

2. EXAMINE THE RESULTS

The following functions help us to examine the results.

printcp(fit) display cp table

plotcp(fit) plot cross-validation results

rsq.rpart(fit) plot approximate R-squared and relative error for different
splits (2 plots). labels are only appropriate for the "anova"
method.

print(fit) print results

summary(fit) detailed results including surrogate splits

plot(fit) plot decision tree

text(fit) label the decision tree plot

post(fit, create postscript plot of decision tree

Advanced Statistics

Generalized Linear Models

Discriminant Function

Time Series

Factor Analysis

Correspondence Analysis

Multidimensional Scaling

Cluster Analysis

Tree-Based Models

Bootstrapping

Matrix Algebra

Top Menu

Home

The R Interface

Data Input

Data Management

Basic Statistics

Advanced Statistics

Basic Graphs

Advanced Graphs

Quick-R
acccessing the power of R

Home Interface Input Manage Stats Adv Stats Graphs Adv Graphs

http://cran.r-project.org/web/packages/rpart/index.html
http://www.mayo.edu/hsr/techrpt/61.pdf
http://www.statmethods.net/advstats/glm.html
http://www.statmethods.net/advstats/discriminant.html
http://www.statmethods.net/advstats/timeseries.html
http://www.statmethods.net/advstats/factor.html
http://www.statmethods.net/advstats/ca.html
http://www.statmethods.net/advstats/mds.html
http://www.statmethods.net/advstats/cluster.html
http://www.statmethods.net/advstats/bootstrapping.html
http://www.statmethods.net/advstats/matrix.html
http://www.statmethods.net/index.html
http://www.statmethods.net/interface/index.html
http://www.statmethods.net/input/index.html
http://www.statmethods.net/management/index.html
http://www.statmethods.net/stats/index.html
http://www.statmethods.net/advstats/index.html
http://www.statmethods.net/graphs/index.html
http://www.statmethods.net/advgraphs/index.html
http://www.statmethods.net/advstats/glm.html
http://www.statmethods.net/advstats/discriminant.html
http://www.statmethods.net/advstats/timeseries.html
http://www.statmethods.net/advstats/factor.html
http://www.statmethods.net/advstats/ca.html
http://www.statmethods.net/advstats/mds.html
http://www.statmethods.net/advstats/cluster.html
http://www.statmethods.net/advstats/bootstrapping.html
http://www.statmethods.net/advstats/matrix.html
http://www.statmethods.net/index.html
http://www.statmethods.net/interface/index.html
http://www.statmethods.net/input/index.html
http://www.statmethods.net/management/index.html
http://www.statmethods.net/stats/index.html
http://www.statmethods.net/advstats/index.html
http://www.statmethods.net/graphs/index.html
http://www.statmethods.net/advgraphs/index.html
http://www.statmethods.net/index.html
http://www.statmethods.net/index.html
http://www.statmethods.net/interface/index.html
http://www.statmethods.net/interface/index.html
http://www.statmethods.net/input/index.html
http://www.statmethods.net/input/index.html
http://www.statmethods.net/management/index.html
http://www.statmethods.net/management/index.html
http://www.statmethods.net/stats/index.html
http://www.statmethods.net/stats/index.html
http://www.statmethods.net/advstats/index.html
http://www.statmethods.net/advstats/index.html
http://www.statmethods.net/graphs/index.html
http://www.statmethods.net/graphs/index.html
http://www.statmethods.net/advgraphs/index.html
http://www.statmethods.net/advgraphs/index.html

Quick-R: Tree-Based Models

http://www.statmethods.net/advstats/cart.html[5/16/2011 10:39:34 AM]

file=)

In trees created by rpart(), move to the LEFT branch when the stated condition is true
(see the graphs below).

3. PRUNE TREE

Prune back the tree to avoid overfitting the data. Typically, you will want to select a tree
size that minimizes the cross-validated error, the xerror column printed by printcp().

Prune the tree to the desired size using
prune(fit, cp=)

Specifically, use printcp() to examine the cross-validated error results, select the
complexity parameter associated with minimum error, and place it into the prune()
function. Alternatively, you can use the code fragment

 fit$cptable[which.min(fit$cptable[,"xerror"]),"CP"]

to automatically select the complexity parameter associated with the smallest cross-
validated error. Thanks to HSAUR for this idea.

CLASSIFICATION TREE EXAMPLE

Let's use the dataframe kyphosis to predict a type of deformation (kyphosis) after
surgery, from age in months (Age), number of vertebrae involved (Number), and the
highest vertebrae operated on (Start).

 click to view

Classification Tree with rpart

library(rpart)

grow tree

fit <- rpart(Kyphosis ~ Age + Number + Start,

 method="class", data=kyphosis)

printcp(fit) # display the results

plotcp(fit) # visualize cross-validation results

summary(fit) # detailed summary of splits

plot tree

plot(fit, uniform=TRUE,

 main="Classification Tree for Kyphosis")

text(fit, use.n=TRUE, all=TRUE, cex=.8)

create attractive postscript plot of tree

post(fit, file = "c:/tree.ps",

 title = "Classification Tree for Kyphosis")

prune the tree

pfit<- prune(fit, cp= fit$cptable[which.min(fit$cptable[,"xerror"]),"CP"])

plot the pruned tree

plot(pfit, uniform=TRUE,

 main="Pruned Classification Tree for Kyphosis")

text(pfit, use.n=TRUE, all=TRUE, cex=.8)

post(pfit, file = "c:/ptree.ps",

 title = "Pruned Classification Tree for Kyphosis")

http://www.statmethods.net/about/books.html
http://www.statmethods.net/advstats/images/cpPlot.png
http://www.statmethods.net/advstats/images/ctree.png
http://www.statmethods.net/advstats/images/tree.pdf

Quick-R: Tree-Based Models

http://www.statmethods.net/advstats/cart.html[5/16/2011 10:39:34 AM]

 click to view

REGRESSION TREE EXAMPLE

In this example we will predict car mileage from price, country, reliability, and car type.
The dataframe is cu.summary.

 click
to view

It turns out that this produces the same tree as the original.

CONDITIONAL INFERENCE TREES VIA PARTY

The party package provides nonparametric regression trees for nominal, ordinal,
numeric, censored, and multivariate responses. party: A laboratory for recursive
partitioning, provides details.

You can create a regression or classification tree via the function

ctree(formula, data=)

Regression Tree Example

library(rpart)

grow tree

fit <- rpart(Mileage~Price + Country + Reliability + Type,

 method="anova", data=cu.summary)

printcp(fit) # display the results

plotcp(fit) # visualize cross-validation results

summary(fit) # detailed summary of splits

create additional plots

par(mfrow=c(1,2)) # two plots on one page

rsq.rpart(fit) # visualize cross-validation results

plot tree

plot(fit, uniform=TRUE,

 main="Regression Tree for Mileage ")

text(fit, use.n=TRUE, all=TRUE, cex=.8)

create attractive postcript plot of tree

post(fit, file = "c:/tree2.ps",

 title = "Regression Tree for Mileage ")

prune the tree

pfit<- prune(fit, cp=0.01160389) # from cptable

plot the pruned tree

plot(pfit, uniform=TRUE,

 main="Pruned Regression Tree for Mileage")

text(pfit, use.n=TRUE, all=TRUE, cex=.8)

post(pfit, file = "c:/ptree2.ps",

 title = "Pruned Regression Tree for Mileage")

http://www.statmethods.net/advstats/images/pctree.png
http://www.statmethods.net/advstats/images/ptree.pdf
http://www.statmethods.net/advstats/images/plotCP2.png
http://www.statmethods.net/advstats/images/rsqplot.png
http://www.statmethods.net/advstats/images/rtree.png
http://www.statmethods.net/advstats/images/tree2.pdf
http://cran.r-project.org/web/packages/party/index.html
http://cran.r-project.org/web/packages/party/vignettes/party.pdf
http://cran.r-project.org/web/packages/party/vignettes/party.pdf

Quick-R: Tree-Based Models

http://www.statmethods.net/advstats/cart.html[5/16/2011 10:39:34 AM]

© 2011 Robert I. Kabacoff, Ph.D. | Design by: styleshout | Valid: XHTML | CSS Home | Sitemap

The type of tree created will depend on the outcome variable (nominal factor, ordered
factor, numeric, etc.). Tree growth is based on statistical stopping rules, so pruning
should not be required.

The previous two examples are re-analyzed below.

 click to view

 click to view

RANDOM FORESTS

Random forests improve predictive accuracy by generating a large number of
bootstrapped trees (based on random samples of variables), classifying a case using
each tree in this new "forest", and deciding a final predicted outcome by combining the
results across all of the trees (an average in regression, a majority vote in classification).
Breiman and Cutler's random forest approach is implimented via the randomForest
package.

Here is an example.

For more details see the comprehensive Random Forest website.

GOING FURTHER

This section has only touched on the options available. To learn more, see the CRAN
Task View on Machine & Statistical Learning.

Conditional Inference Tree for Kyphosis

library(party)

fit <- ctree(Kyphosis ~ Age + Number + Start,

 data=kyphosis)

plot(fit, main="Conditional Inference Tree for Kyphosis")

Conditional Inference Tree for Mileage

library(party)

fit2 <- ctree(Mileage~Price + Country + Reliability + Type,

 data=na.omit(cu.summary))

Random Forest prediction of Kyphosis data

library(randomForest)

fit <- randomForest(Kyphosis ~ Age + Number + Start, data=kyphosis)

print(fit) # view results

importance(fit) # importance of each predictor

http://www.statmethods.net/about/author.html
http://www.styleshout.com/
http://validator.w3.org/check?uri=referer
http://jigsaw.w3.org/css-validator/check/referer
http://www.statmethods.net/index.html
http://www.statmethods.net/about/sitemap.html
http://www.statmethods.net/advstats/images/citree.png
http://www.statmethods.net/advstats/images/citree2.png
http://cran.r-project.org/web/packages/randomForest/index.html
http://stat-www.berkeley.edu/users/breiman/RandomForests/
http://cran.r-project.org/web/views/MachineLearning.html

	statmethods.net
	Quick-R: Tree-Based Models

