Classification Decision Tree Example Using CART for the Kyphosis Data Set

- There are several packages which support classification and regression tree analysis.
- This discussion integrates the task output for the classification tree example for the kyphosis data set with the CART package in R.

Kyphosis Data Frame Description
The kyphosis data frame has 81 rows and 4 columns representing data on children who have had corrective spinal surgery.

- **Kyphosis**: A factor with two levels (absent/present) indicating if the kyphosis condition was present after the operation
- **Age**: In months
- **Number**: The number of vertebrae involved
- **Start**: The number of the first (topmost) vertebra operated on

#Build Classification Tree With RPART for kyphosis data frame

```r
> library(rpart)

> kyphosis[1:3,]

Kyphosis Age Number Start
1 absent 71 3 5
2 absent 158 3 14
3 present 128 4 5
```

```r
> pairs(kyphosis,panel=panel.smooth)
```
Fit a Model [Use defaults cp=.01, minsplit=20, minbucket=round(minsplit/3),xval=10]
> fit <- rpart(Kyphosis~Age+Number+Start, method="class", data=kyphosis)
> fit

n= 81

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 81 17 absent (0.7901235 0.2098765)
 2) Start>=8.5 62 6 absent (0.9032258 0.0967742)
 4) Start>=14.5 29 0 absent (1.0000000 0.0000000) *
 5) Start< 14.5 33 6 absent (0.8181818 0.1818182)
 10) Age< 55 12 0 absent (1.0000000 0.0000000) *
 11) Age>=55 21 6 absent (0.7142857 0.2857143)
 22) Age>=111 14 2 absent (0.8571429 0.1428571) *
 23) Age< 111 7 3 present (0.4285714 0.5714286) *
 3) Start< 8.5 19 8 present (0.4210526 0.5789474) *

Display the Complexity Parameter table for the fitted rpart object
> printcp(fit)

Classification tree:
rpart(formula = Kyphosis ~ Age + Number + Start, data = kyphosis,
 method = "class")

Variables actually used in tree construction:
[1] Age Start

Root node error: 17/81 = 0.20988

n= 81

<table>
<thead>
<tr>
<th>CP</th>
<th>nsplit</th>
<th>rel error</th>
<th>xerror</th>
<th>xstd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0.176471</td>
<td>0</td>
<td>1.000000</td>
<td>1.0000</td>
<td>0.21559</td>
</tr>
<tr>
<td>2 0.019608</td>
<td>1</td>
<td>0.82353</td>
<td>1.0588</td>
<td>0.22010</td>
</tr>
<tr>
<td>3 0.010000</td>
<td>4</td>
<td>0.76471</td>
<td>1.1176</td>
<td>0.22433</td>
</tr>
</tbody>
</table>

Automatically select the complexity parameter associated with the smallest cross-validation error. [HSAUR]
> fit$cptable[which.min(fit$cptable,"xerror"),"CP"]
[1] 0.1764706
Visualize the Cross-Validation Results

> plotcp(fit)

![Cross-Validation Results Plot](image)

Plot Original Tree to a postscript file

> post(fit,file="tree.ps",title="Classification Tree for Kyphosis")

Plot Original Tree

> plot(fit,uniform=TRUE,compress=TRUE,lty=3,branch=.7,main="Classification Tree for Kyphosis")
> text(fit,use.n=TRUE,all=TRUE,cex=.8,xpd=TRUE)

![Original Tree](image)
Plot Pruned Tree

```r
> pfit <- prune(fit, cp=fit$cptable[which.min(fit$cptable[,"xerror"]),"CP")
> plot(pfit,uniform=TRUE,compress=TRUE,lty=3,branch=.7,main="Pruned Classification Tree for Kyphosis")
> text(pfit,use.n=TRUE,all=TRUE,cex=.8,xpd=TRUE)
```

![Pruned Classification Tree for Kyphosis](image)

Compute the Misclassification Error for Pruned Tree

```r
> (tt <- table(actual=kyphosis$Kyphosis,predicted=predict(pfit,type="class")))
predicted
          actual     absent present
absent     56       8
present     6      11
```

The Pruned Tree has a 17% error rate.

```r
> 1-sum(diag(tt))/sum(tt)
[1] 0.1728395
```

Create a Conditional Inference Tree

```r
> library(party)
> fit <- ctree(Kyphosis~Age+Number+Start,data=kyphosis)
> plot(fit,main="Conditional Inference Tree for Kyphosis")
```
Perform Random Forest Prediction of Kyphosis Data

```r
> library(randomForest)

   randomForest 4.6-2
     Type rfNews() to see new features/changes/bug fixes.

> fit <- randomForest(Kyphosis~Age+Number+Start, data=kyphosis)
> print(fit)

Call:
  randomForest(formula = Kyphosis ~ Age + Number + Start, data = kyphosis)
Type of random forest: classification
  Number of trees: 500
No. of variables tried at each split: 1

  OOB estimate of error rate: 18.52%
Confusion matrix:

             absent present class.error
absent        60     4       0.0625000
present       11     6       0.6470588

> importance(fit)

          MeanDecreaseGini
Age         8.557202
Number      5.435533
Start      9.975925
```

F. References
Decision Tree Topic Notes
