

	catcacca gtagtagc aagtatgc ctcaggaa tggactcc		acagtagi Jaaaagta Jacagtagi Jacaagta	
	-20		1	20
talA	CITTICAAGG	AGTATITCCT	ATGAACGAGT	TAGACGGCAT
evgA	CATTGCAAAG	GGAATAATCT	ATGAACGCAA	TAATTATTGA
ypai	CATTICAGG	ATAACTITCT	AIGAAAGIAA	ACTIAATACT
nirB	GAAAAGAAAT	CGAGGCAAAA	ATGAGCAAAG	TCAGACTCGC
hmpA	TGCAAAAAAA	GGAAGACCAT	ATGCTTGACG	CTCAAACCAT
narQ	TTTTTGTGGA	GAAGACGCGT	GTGATTGTTA	AACGACCCGT
glt⊢	GTTATTAAGG	ATATGTTCAT	ATGTTTTTCA	AAAAGAACCT
intS	TACCCACCGG	ATTTTTACCC	ATGCTCACCG	TTAAGCAGAT
yfdF	AATCAAAATG	GAATAAAATC	ATGCTACCAT	CTATTTCAAT
dsdX	ATCACAGGGG	AAGGTGAGAT	ATGCACTCTC	AAATCTGGGT
suhB	ACATCCAGTG	AGAGAGACCG	ATGCATCCGA	TGCTGAACAT
Consensus	AATTTAAAGG	AGAATTACCT	ATGAACGCAA	TAATAAACAT
Sequence Logo	-\$5 500			€ 8~ 5 € 5 €
	_AIT ~_AMGV			IA5_A_TAT
Conservation				
Ungapped sec	quence alignment	of eleven E. coli	sequences defini	ng a start codon.
www.clcbio.com				©2018 Sami Khuri

				Se	qu	lei	nc	e	M	01	tif	S			
2 •			۸	Т	٨		٨								
-	1	2	A	4	5			A	2	10	11	12	13	14	15
Table M	1 M2.1	2 Vucleotid	3 le freque	4 encies in	5 389 knov	6 vn TATA b	7 Doxes.	8	9	10	11	12	13	14	15
Table M	1 M2.1 N 1	2 Nucleotid	3 le freque 3	4 encies in 4	5 389 knov 5	6 vn TATA b 6	7 poxes. 7	8	9	10 10	11 11	12 12	13 13	14 14	15 15
Table M Position	1 M2.1 M 1 61	2 Nucleotid 2 16	3 le freque 3 I352	4 encies in 4 3	5 389 knov 5 354	6 vn TATA b 6 268	7 poxes. 7 360	8 222	9 9 155	10 10 56	11 11 83	12 12 12 82	13 13 82	14 14 68	15 15 15 77
Table M Position	1 M2.1 M 1 61 145	2 Nucleotid 2 16 46	3 le freque 3 1352 0	4 encies in <u>4</u> <u>3</u> 10	5 389 knov 5 13541 0	6 vn TATA b 6 268 0	7 poxes. 7 360 3	8 8 222 2	9 9 155 44	10 10 56 135	11 11 11 83 147	12 12 12 82 127	13 13 82 118	14 14 68 107	15 15 77 101
Table M Position A G	1 M2.1 N 1 61 145 152	2 Nucleotid 2 16 46 18	3 le freque 3 352 0 2	4 encies in 4 3 10 2	5 389 knov 5 3354 0 5	6 vn TATA b 6 268 0 0	7 poxes. 7 360 3 10	8 222 2 44	9 9 155 44 157	10 10 56 135 150	11 11 83 147 128	12 12 12 82 127 128	13 13 82 118 128	14 14 68 107 139	15 15 77 101 140

	E.		gta gta stc gta	cac gta tat agg act	get get laat cec					tes agt aas tet eto	at c agt agt agt agt	acc tag atc ggge ctc tct			
Cr	ea	ti	n	g 1	Cal	51 6	es	0	f I	r	eq	ue	en	ci	es
The The Simi We d	prot prot ilarly can t	babil babil y for thus lucleotid	ity o ity o all 4 creat	f hav f a T 4 base te a ta encies in	ring a in the es at a able c 389 know	n A i e sec all 15 of fre n TATA b	n the ond pos quer 0xes.	e firs posi sition ncies	st po tion ns.	sitio is: 3	n is: 09/3	61/3 89 =	89 = 0.79	0.15	68
Position	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A	61	16	352	3	354	268	360	222	155	56	83	82	82	68	77
С	145	46	0	10	0	0	3	2	44	135	147	127	118	107	101
G	152	18	2	2	5	0	10	44	157	150	128	128	128	139	140
T	31	309	35	374	30	121	6	121	33	48	31	52	61	75	71
opyright	t © 200)6 A. M	alcolm	Campbe	11								©201	8 Sami	Khuri

	Contraction of the second			agg act			NA.			tet et: ge:		gge ctc tct		A	CR
	C	re	at	in	g	Lo	g.	-0	d	ls	T	ab	le	S	
nste	ead o	of cre	eatin	g a ta	able o	of free	auer	ncies	we	crea	ite a	table	ofl	og-o	dds
Supr	oose	that	the	geno	me-w	ride a	ivera	ige (,e F and	d C o	conte	ent is	44%	,	
r⊶pi Chei	n the	nro	hahi	lity o	f an 4	Δ is 0	56/	2 = 0	128					••	
noi	I UIC	, pro	Uaun	inty 0	1 all 1	115 0		2 (0.20.	•					
	(0.1		0.00	\ 1	(0	50	0	0.4							
og ₂	(0.1	568/	0.28) = 10	$\log_2(0)$	= (0C.	= - 0	.84.							
Note	e tha	t the	base	e of t	he log	garith	ım h	ere	ts 2.						
		- 1	$2_{2}(0)$.7943	8/0.28) = 1	.5.								
Simi	ilarly	y, log	52 (**												
Simi able M	ilarly M2.1 N	y, log Iucleotid	e freque	encies in	389 know	'n TATA b	oxes.								
Simi able Mi	ilarly M2.1 N 1	y, IOg Iucleotid 2	e freque	encies in 4	389 know 5	n TATA b 6	oxes. 7	8	9	10	11	12	13	14	15
Simi able Mi	ilarly M2.1 N 1 61	y, IOg lucleotid 2 16	e freque 3 352	encies in 4 3	389 know 5 354	n TATA b 6 268	oxes. 7 360	8 222	9 155	10 56	11 83	12 82	13 82	14 68	15 7
Simi able Mi	1 145	y, IOg lucleotid 2 16 46	e freque 3 352 0	encies in 4 3 10	389 know 5 354 0	6 268 0	oxes. 7 360 3	8 222 2	9 155 44	10 56 135	11 83 147	12 82 127	13 82 118	14 68 107	15 7 10
Simi able Mi	1 M2.1 N 1 61 145 152	y, IOg lucleotid 2 16 46 18	e freque 3 352 0 2	encies in 4 3 10 2	389 know 5 354 0 5	6 268 0 0	7 360 3 10	8 222 2 44	9 155 44 157	10 56 135 150	11 83 147 128	12 82 127 128	13 82 118 128	14 68 107 139	15 7 10 14
Simi able Mi osition	M2.1 N 1 61 145 152 31	y, IOg lucleotid 2 16 46 18 309	3 352 0 2 35	4 3 10 2 374	389 know 5 354 0 5 30	n TATA b 6 268 0 0 121	7 360 3 10 6	8 222 2 44 121	9 155 44 157 33	10 56 135 150 48	11 83 147 128 31	12 82 127 128 52	13 82 118 128 61	14 68 107 139 75	15 7 10 14 7

Contraction of the second					cca agr tgt			E							
		1	`h	e	Lo)g-	0	dd	ls	T	ab	le	S		
Table MM	12.1 N	ucleoti	de freq	uencies	in 389 k	nown TAT/	A boxes								
Position	1	2	3	4	5	b	1	8	9	10	11	12	18	14	15
A	61	16	352	3	354	4 268	8 36	0 222	155	56	83	8	2 8	26	58 7
	145	46	0	10) (0	3 2	44	135	147	12	7 11	8 10	07 10
3	152	18	2	2		5 (0 1	0 44	157	150	128	12	8 12	8 13	<u>14</u>
Γ	31	309	35	374	3) 12	1	6 121	33	48	31	5	26	1 7	75 7
Table M	M2.2 P	osition	weight	mətrix.											
A -0.8	34 -2	.77	1.69	-5.18	1.70	1.30	1.76	1.03	0.51	-0.96	-0.39	-0.41	-0.41	-0.68	-0.50
C 0.7	76 -0	.90 –	99.00	-3.10	-99.00	-99.00	-4.80	-5.42	-0.96	0.66	0.78	0.57	0.46	0.32	0.24
G 0.8	33 -2	.25 -	-5.42	-5.42	-4.10	-99.00	-3.06	-0.96	0.88	0.81	0.58	0.58	0.58	0.70	0.71
T -1.8	31 1	.50	-1.64	1.78	-1.86	0.15	-4.14	0.15	-1.72	-1.18	-1.81	-1.07	-0.84	-0.54	-0.62
oyright (© 2006	A. Ma	alcolm	Campb	ell								©2	018 Sat	ni Khur

(B)	Contraction of the second	No.	tce agrt aas							age	ag	acc tag atg	3	Color State	
¥-8	A				ete:		2. A.			Gree		ete tet		A.	
		TT	oir		T	\ G _	0	44	c /	Ta	h 1	00	1	1	
та	Ja MM2	2 Dociti		LS t matrix		' 5'		uu	3	1 a	.01	C 3		•	
		.2 POSIU	ion weign	t mau ix.											
A	-0.84	-2.77	1.69	-5.18	1.70	1.30	1.76	1.03	0.51	-0.96	-0.39	-0.41	-0.41	-0.68	-0.50
С	0.76	-0.90	-99.00	-3.10	-99.00	-99.00	-4.80	-5.42	-0.96	0.66	0.78	0.57	0.46	0.32	0.24
G	0.83	-2.25	-5.42	-5.42	-4.10	-99.00	-3.06	-0.96	0.88	0.81	0.58	0.58	0.58	0.70	0.71
Т	-1.81	1.50	-1.64	1.78	-1.86	0.15	-4.14	0.15	-1.72	-1.18	-1.81	-1.07	-0.84	-0.54	-0.62
Tal	ole MM2	. 3 PWM	score of	the 15 b	p sequen	Ce ACAT	'ATATA	AGCTG	G.						
	А	С	Α	Т	Α	Т	А	Т	А	А	G	С	Т	G	G
A	-0.84	-2.77	1.69	-5.18	1.70	1.30	1.76	1.03	0.51	-0.96	-0.39	-0.41	-0.41	-0.68	-0.50
С	0.76	-0.90	-99.00	-3.10	-99.00	-99.00	-4.80	-5.42	-0.96	0.66	0.78	0.57	0.46	0.32	0.24
G	0.83	-2.25	-5.42	-5.42	-4.10	-99.00	-3.06	-0.96	0.88	0.81	0.58	0.58	0.58	0.70	0.71
Т	-1.81	1.50	-1.64	1.78	-1.86	0.15	-4.14	0.15	-1.72	-1.18	-1.81	-1.07	-0.84	-0.54	-0.62
	Table by tak	MM2 ting th	2.2 was ne log o	const of the	tructed ratio c	l as exj of the c	plaine bserv	d in tl ed fre	ne pre quenc	vious cy ove	slides r the e	; in o expec	ther w ted fre	vords, equen	cy.
Co	pyright	© 2006	A. Malco	olm Cam	pbell								©201	3 Sami F	Churi

		No.		agt agt cag igt igt ict	acce acge igas ster			No.		tce agt aas tet cte gce	atc ag agt iga iga	acc acc gga ctc			
Tał	ole MM2	Us .2 Positi	sin ion weigh	g t matrix.	Lo	g-(Od	ld	s 1	[a]	b 1	es	(I	I)	
А	-0.84	-2.77	1.69	-5.18	1.70	1.30	1.76	1.03	0.51	-0.96	-0.39	-0.41	-0.41	-0.68	-0.50
С	0.76	-0.90	-99.00	-3.10	-99.00	-99.00	-4.80	-5.42	-0.96	0.66	0.78	0.57	0.46	0.32	0.24
G	0.83	-2.25	-5.42	-5.42	-4.10	-99.00	-3.06	-0.96	0.88	0.81	0.58	0.58	0.58	0.70	0.71
Т	-1.81	1.50	-1.64	1.78	-1.86	0.15	-4.14	0.15	-1.72	-1.18	-1.81	-1.07	-0.84	-0.54	-0.62
Tał	ole MM2	.3 PWM	score of	the 15 b	p sequen	CE ACAT	ATATA	AGCTG	3.						
	А	С	A	Т	А	T	А	Т	А	А	G	С	Т	G	G
A	-0.84	-2.77	1.69	-5.18	1.70	1.30	1.76	1.03	0.51	-0.96	-0.39	-0.41	-0.41	-0.68	-0.50
С	0.76	-0.90	-99.00	-3.10	-99.00	-99.00	-4.80	-5.42	-0.96	0.66	0.78	0.57	0.46	0.32	0.24
G	0.83	-2.25	-5.42	-5.42	-4.10	-99.00	-3.06	-0.96	0.88	0.81	0.58	0.58	0.58	0.70	0.71
Т	-1.81	1.50	-1.64	1.78	-1.86	0.15	-4.14	0.15	-1.72	-1.18	-1.81	-1.07	-0.84	-0.54	-0.62
, , , ,	To see values In the	e if a s s from exam	sequent the P ple abo	ce of WM a ove, v	length nd see ve add	15 is a if we the 15	TATA get a v highl	A box, value ighteo	, we s above 1 num	imply some bers t	add t e thres o get	he co shholo 6.78.	rrespo I.	nding	5
Co	pyright	© 2006	A. Malco	olm Cam	pbell								@2015	Sami K	Churi

