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Importance and Abundance 
of Motifs

• DNA motifs are nucleotide sequence patterns of 
functional significance.

• Examples:
– The TATA box is a motif that helps RNA 

polymerase find the transcription start site 
(TSS) in many eukaryotic genes.

– The CAT box is another highly conserved 
region used for the initiation of transcription.
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From DNA to Protein
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Ungapped sequence alignment of eleven E. coli sequences defining a start codon.
www.clcbio.com
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E.Coli Promoter Sequences
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Anatomy of an Intron

logo logologo
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Sequence Motifs
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Detecting Motifs
A motif is a sequence pattern of functional significance.
Example: The TATA box is a motif that helps the 
polymerase find the transcription start site.

Copyright © 2006 A. Malcolm Campbell
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Creating Tables of Frequencies
The probability of having an A in the first position is: 61/389 = 0.1568
The probability of a T in the second position is: 309/389 = 0.7943
Similarly for all 4 bases at all 15 positions.
We can thus create a table of frequencies. 

Copyright © 2006 A. Malcolm Campbell
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Creating Log-Odds Tables
Instead of creating a table of frequencies, we create a table of log-odds.
Suppose that the genome-wide average G and C content is 44%.
Then the probability of an A is 0.56/2 = 0.28. 

log2 (0.1568/0.28) = log2 (0.56) = - 0.84.   
Note that the base of the logarithm here is 2.
Similarly, log2 (0.7943/0.28) = 1.5.

Copyright © 2006 A. Malcolm Campbell
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The Log-Odds Tables
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Taking Log-Odds
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What is the Significance 
of Log-Odds

• If the nucleotide is more likely to occur at a 
given position than it is to occur overall, the 
ratio will be bigger than 1.0 and the log odds 
is positive.

• If the nucleotide is less likely to occur at a 
certain position than it is to occur overall, then 
the ratio will be smaller than 1.0 and the log 
odds is negative. 
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Using Log-Odds Tables (I)

Table MM2.2 was constructed as explained in the previous slides; in other words,
by taking the log of the ratio of the observed frequency over the expected frequency.

Copyright © 2006 A. Malcolm Campbell
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Using Log-Odds Tables (II)

To see if a sequence of length 15 is a TATA box, we simply add the corresponding 
values from the PWM and see if we get a value above some threshhold. 
In the example above, we add the 15 highlighted numbers to get 6.78.

Copyright © 2006 A. Malcolm Campbell
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Consensus Sequence and PWM
• All current methods for representing DNA motifs 

involve either consensus sequences or probabilistic 
models (such as PWM) of the motif. 

• Consensus sequences do not adequately represent the 
variability seen in promoters or transcription factor 
binding sites. 

• Both consensus sequences and PWM models assume 
positional independence. Neither method can 
accommodate correlations between positions. 

• Probabilities calculated from PWM models can be 
highly misleading. 
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Classification Based 
Statistics

• Quantitative method to evaluate: 
• how well one can distinguish between 

cases and controls.
• how well a diagnostic test performs in 

testing for some disease.
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With this test, how many 
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will I catch?
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With this test, will I tell
too many people they 
might be ill?
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The likelihood of spotting 
a negative case when 
presented with one.

schmitzberger@stanford.edu



2.14

February 2018

©2018 Sami Khuri

SIGCSE 2018
Motifs

©2018 Sami Khuri©2018 Sami Khuri

Medical Test Evaluation
■ True Positives = Test states you have the disease 

when you do have the disease
■ True Negatives = Test states you do not have the 

disease when you do not have the disease
■ False Positives = Test states you have the disease 

when you do not have the disease
■ False Negatives = Test states you do not have the 

disease when you do
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Evaluating Medical Tests
■ Sensitivity =The probability of having a positive test 

result among those with a positive diagnosis for the 
disease
– Sensitivity 

= True Positives / True Positives + False Negatives

■ Specificity = The probability of having a negative test 
result among those with a negative diagnosis for the 
disease
– Specificity 

= True Negatives / True Negatives + False Positives


