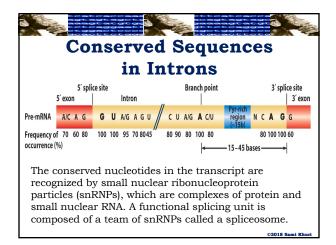
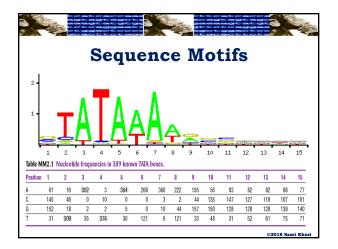
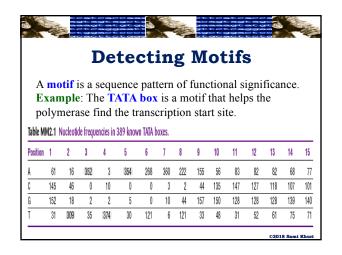
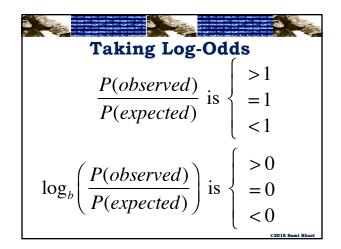
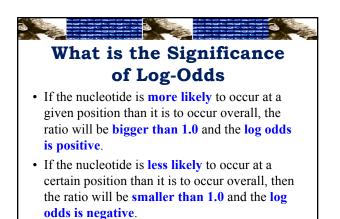

- Examples:
 - The **TATA box** is a motif that helps RNA polymerase find the transcription start site (TSS) in many eukaryotic genes.
 - The **CAT box** is another highly conserved region used for the initiation of transcription.





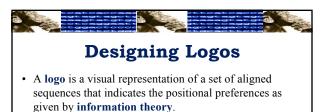






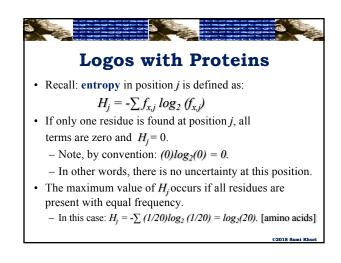
The	pro	babil	ity o	of hav	Cal	n A i	n the	e firs	st po	sitio					
Sim			2		es at a					is: 3	09/3	89 =	0.79	43	
					able c 389 know		1	ncies							
10010 111	114+1				507 Kilon	6	7	8	9	10	11	12	13	14	15
Position	1	2	3	4	0										
Position A	1	2 16	3 352	4	5 354	268	360	222	155	56	83	82	82	68	77
Position A C	1 61 145	2 16 46	3 352 0	4 3 10	э 354 0	268 0	360	222	155 44	56 135	83 147	82 127	82 118	68 107	77 101
Position A C G	61	10		·	5 354 0 5	268 0 0	360 3 10			**	**	~~	~	**	

Sup	ead o	f cro that	eatin the	ig a ta geno	able o me-w	of fre vide a	quer	ncies age (, we	crea	ite a	table	of lo	og-o	dds.
Sup	pose	that	the	geno	me-w	vide a	ivera	age (dds.
Sup	pose	that	the	geno	me-w	vide a	ivera	age (uus.
				<u> </u>				0	j ano	au	conte	nt is			
Tha	a 41a a		6.6.	1:4									77/0).	
THE	1 the	pro	Dabi	шту о	ot an A	A 15 ().56/	2 = 0).28.						
		-													
	(0.1)			. 1	(0	50									
log_2	(0.13)	068/	0.28	i = 10	$pg_2(0)$.36)	= - (0.84.							
Note	e that	the	bas	e of t	he log	garitl	nm h	iere i	is 2.						
						-									
Sim	larly	100				j - 1									
	2		-2 \			·									
Sim Table M	2		-2 \		389 know	n TATA b	oxes.								
	2		-2 \			n TATA b 6	oxes. 7	8	9	10	11	12	13	14	15
able M	2	cleotid	e freque		389 know			8 222	9 155	10 56	11 83	12 82	13 82	14 68	15 77
able M	W2.1 Nu	cleotid 2	e freque	encies in 3 4	389 know 5	6	7	-	<u> </u>						
lable M	M2.1 Nu 1 61	cleotid 2 16	e freque 3 352	encies in 3 4 3	389 know 5 354	6 268	7 360	222	155	56	83	82	82	68	77


		1	п	e											
				U	LU	g-	U	10	lS	1	aD	16	S		
Table M	M2.1 N	ucleotid	le frequ	iencies i	in 389 kn	own TATA	boxes.								
Position	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1
A	61	16	352	3	354	268	360	222	155	56	83	8	2 8	2 68	
C	145	46	0	10	0	0	3	2	44	135	147	12	7 11	8 107	1
G	152	18	2	2	5	0	10	44	157	150	128	12	B 12	8 139	1
T	31	309	35	374	30	121	6	121	33	48	31	5	26	1 75	
T.L. 14								Ļ							
_	M2.2 P				1 70	1 20	176	1.03	0.51	-0.06	_0.30	-0.41	-0.41	-0.68	-0.50
A -0.	.84 –2	.77	1.69	-5.18	1.70	1.30	1.76	1.03		-0.96	-0.39	-0.41	-0.41		
A -0. C 0.	_	.77 .90 –9	1.69 · 99.00 ·	-5.18	-99.00	-99.00 -	-4.80 -		0.51 -0.96 0.88	-0.96 0.66 0.81	-0.39 0.78 0.58	-0.41 0.57 0.58	-0.41 0.46 0.58	-0.68 0.32 0.70	-0.50 0.24 0.71

ab	ole MM2		sir on weigh		LC	og-	O	dd	S '	Га	bl	es	; (1	.)	
	-0.84	-2.77	1.69	-5.18	1.70	1.30	1.76	1.03	0.51	-0.96	-0.39	-0.41	-0.41	-0.68	-0.50
	0.76	-0.90	-99.00	-3.10	-99.00	-99.00	-4.80	-5.42	-0.96	0.66	0.78	0.57	0.46	0.32	0.24
	0.83	-2.25	-5.42	-5.42	-4.10	-99.00	-3.06	-0.96	0.88	0.81	0.58	0.58	0.58	0.70	0.71
									4 70	4.40	1.01	1.07	0.04	0.04	0.00
i iab	-1.81 ble MM2	1.50 .3 PWM	-1.64 score of	1.78 the 15 b	-1.86	0.15 ce ACAT	-4.14 'ATATA	0.15 AGCTG	-1.72	-1.18	-1.81	-1.07	-0.84	-0.54	-0.62
										-1.18 A	-1.81 G	- 1.07 C	-0.84 T	-0.54 G	-0.62 G
ab	ole MM2	.3 PWM	score of		p sequen		ATATA		3.				-0.84 T -0.41		
	ole MM2 A	.3 PWM C	score of	the 15 b	p sequen A	ce ACAT T	'ATATA A	AGCTG T	з. А	A	G	C	T	G	G
ab	A -0.84	.3 PWM C	score of A 1.69	the 15 b T -5.18	p sequen A 1.70	ce ACAT T 1.30	ATATA A 1.76	AGCTG T 1.03	3. A 0.51	A -0.96	G -0.39	C -0.41	T -0.41	G -0.68	G - 0.50

					LO	g-(Ud	ld	5 1	l'a	ble	es	(1	I)	
lab	-0.84	-2.77	on weigh	t matrix. -5.18	4.70	1.30	4.70	1.03	0.54	-0.96	0.00	0.11	-0.41	-0.68	0.50
1	-0.84	-2.77	1.69	-3.10	1.70	-99.00	1.76 -4.80	-5.42	0.51	-0.96	-0.39	-0.41	-0.41	-0.68	-0.50
,	0.76	-2.25	-5.42	-5.42	-4.10	-99.00	-3.06	-0.96	0.88	0.80	0.78	0.57	0.40	0.32	0.24
	0.03	-2.20	=0.4Z				-4.14	0.15	-1.72	-1.18	-1.81	-1.07	-0.84	-0.54	-0.62
ab iab	-1.81	1.50	-1.64	1.78 the 15 b	-1.86	0.15 ce acat				-1.10	-1.01	-1.07	-0.04	0.04	-0.02
ab						0.15 ce ACAT T				- 1.10	G	C	-0.04	G	-0.02 G
ab	ole MM2	3 PWM	score of		p sequen		ATATA		3.				T 		
ab	ole MM2 A	3 PWM	score of	the 15 b	p sequen A	ce ACAT T	atata A	AGCTO T	з. А	A	G	C	T	G	G
ab	A -0.84	3 PWM C -2.77	score of A 1.69	the 15 b T -5.18	p sequen A 1.70	ce ACAT T 1.30	атата А 1.76	AGCTG T 1.03	3. A 0.51	A -0.96	G -0.39	C -0.41	T -0.41	G -0.68	G 0.50


- A logo gives a visual representation of the motif.
- The size of the character in the stack of characters is proportional to the character's frequency in that position.
- The total height of each column is proportional to its **information** content.
- **Information theory** quantifies the amount of information

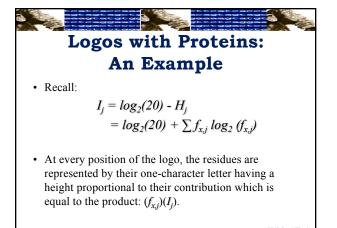
• The **entropy** (uncertainty) in position *j* is defined as:

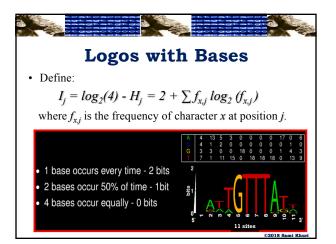
$H_j = -\sum f_{x,j} \log_2 (f_{x,j})$ where

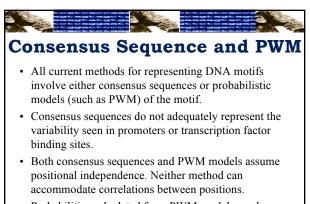
 $f_{x,j}$ is the frequency of character x in position j, the summation is over all the characters x, and the entropy units are bits of information.

Logos with Proteins: An Example

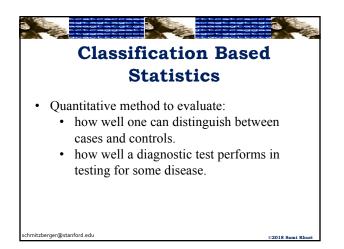
• The information present in the pattern at position *j* is denoted by *I_j* and is given by:

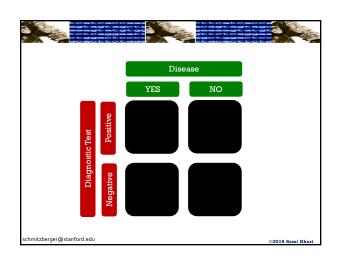

- In other words, the information content I_j at position j is defined as the "opposite" of its uncertainty.
- Note that a position with a perfectly conserved residue will have the maximum amount of information.


Logos with Proteins: An Example


• Recall: $I_i = log_2(20) - H_i$

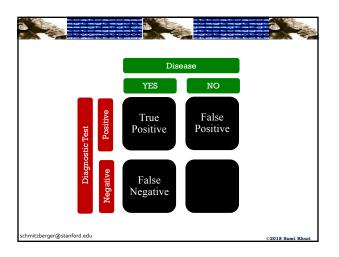
$$= log_{2}(20) + \sum f_{r_{i}} log_{2}(f_{r_{i}})$$


- The information content is a number between 0 and $log_2(20)$ bits and measures the conservation of a position in a profile.
- Since conserved positions in sequence families are considered to be functionally or structurally important, they should stand out when the profile is visualized.








• Probabilities calculated from PWM models can be highly misleading.

