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Importance and Abundance 
of Motifs

• DNA motifs are nucleotide sequence patterns of 
functional significance.

• Examples:
– The TATA box is a motif that helps RNA 

polymerase find the transcription start site 
(TSS) in many eukaryotic genes.

– The CAT box is another highly conserved 
region used for the initiation of transcription.
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From DNA to Protein
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Ungapped sequence alignment of eleven E. coli sequences defining a start codon.
www.clcbio.com
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E.Coli Promoter Sequences
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Anatomy of an Intron

logo logologo
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Conserved Sequences 
in Introns

The conserved nucleotides in the transcript are 
recognized by small nuclear ribonucleoprotein 
particles (snRNPs), which are complexes of protein and 
small nuclear RNA. A functional splicing unit is 
composed of a team of snRNPs called a spliceosome.
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Sequence Motifs
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Detecting Motifs
A motif is a sequence pattern of functional significance.
Example: The TATA box is a motif that helps the 
polymerase find the transcription start site.
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Creating Tables of Frequencies
The probability of having an A in the first position is: 61/389 = 0.1568
The probability of a T in the second position is: 309/389 = 0.7943
Similarly for all 4 bases at all 15 positions.
We can thus create a table of frequencies. 
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Creating Log-Odds Tables
Instead of creating a table of frequencies, we create a table of log-odds.
Suppose that the genome-wide average G and C content is 44%.
Then the probability of an A is 0.56/2 = 0.28. 

log2 (0.1568/0.28) = log2 (0.56) = - 0.84.   
Note that the base of the logarithm here is 2.
Similarly, log2 (0.7943/0.28) = 1.5.
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The Log-Odds Tables
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Taking Log-Odds
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What is the Significance 
of Log-Odds

• If the nucleotide is more likely to occur at a 
given position than it is to occur overall, the 
ratio will be bigger than 1.0 and the log odds 
is positive.

• If the nucleotide is less likely to occur at a 
certain position than it is to occur overall, then 
the ratio will be smaller than 1.0 and the log 
odds is negative. 
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Using Log-Odds Tables (I)

Table MM2.2 was constructed as explained in the previous slides; in other words,
by taking the log of the ratio of the observed frequency over the expected frequency.
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Using Log-Odds Tables (II)

To see if a sequence of length 15 is a TATA box, we simply add the corresponding 
values from the PWM and see if we get a value above some threshhold. 
In the example above, we add the 15 highlighted numbers to get 6.78.
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Designing Logos
• A logo is a visual representation of a set of aligned 

sequences that indicates the positional preferences as 
given by information theory.

• A logo gives a visual representation of the motif.
• The size of the character in the stack of characters is 

proportional to the character’s frequency in that position.
• The total height of each column is proportional to its 

information content.
• Information theory quantifies the amount of 

information
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Entropy and Logos
• The entropy of a random variable is a measure 

of the uncertainty of the random variable.
• The entropy (uncertainty) in position j is 

defined as:
Hj = -∑ fx,j log2 (fx,j)  

where 
fx,j is the frequency of character x in position j,
the summation is over all the characters x, and
the entropy units are bits of information.
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Logos with Proteins
• Recall: entropy in position j is defined as:

Hj = -∑ fx,j log2 (fx,j)  
• If only one residue is found at position j, all

terms are zero and  Hj = 0.
– Note, by convention: (0)log2(0) = 0. 
– In other words, there is no uncertainty at this position.

• The maximum value of Hj occurs if all residues are 
present with equal frequency. 
– In this case: Hj = -∑ (1/20)log2 (1/20) = log2(20). [amino acids] 
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Logos with Proteins: 
An Example

• The information present in the pattern at position j is 
denoted by Ij and is given by:

Ij = log2(20) - Hj

= log2(20) + ∑ fx,j log2 (fx,j)  

• In other words, the information content Ij at position  j
is defined as the "opposite" of its uncertainty. 

• Note that a position with a perfectly conserved residue 
will have the maximum amount of information.
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Logos with Proteins: 
An Example

• Recall: Ij = log2(20) - Hj

= log2(20) + ∑ fx,j log2 (fx,j)  
• The information content is a number between 0 and 

log2(20) bits and measures the conservation of a 
position in a profile.

• Since conserved positions in sequence families are 
considered to be functionally or structurally 
important, they should stand out when the profile is 
visualized. 
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Logos with Proteins: 
An Example

• Recall:
Ij = log2(20) - Hj

= log2(20) + ∑ fx,j log2 (fx,j)  

• At every position of the logo, the residues are 
represented by their one-character letter having a 
height proportional to their contribution which is 
equal to the product: (fx,j)(Ij).
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Logos with Bases
• Define:

Ij = log2(4) - Hj = 2 + ∑ fx,j log2 (fx,j )  
where fx.j is the frequency of character x at position j.

11 sites
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Consensus Sequence and PWM
• All current methods for representing DNA motifs 

involve either consensus sequences or probabilistic 
models (such as PWM) of the motif. 

• Consensus sequences do not adequately represent the 
variability seen in promoters or transcription factor 
binding sites. 

• Both consensus sequences and PWM models assume 
positional independence. Neither method can 
accommodate correlations between positions. 

• Probabilities calculated from PWM models can be 
highly misleading. 
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Classification Based 
Statistics

• Quantitative method to evaluate: 
• how well one can distinguish between 

cases and controls.
• how well a diagnostic test performs in 

testing for some disease.
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With this test, how many 
people that are actually ill
will I catch?

OR
The likelihood of spotting 
a positive case when 
presented with one.
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With this test, will I tell
too many people they 
might be ill?

OR
The likelihood of spotting 
a negative case when 
presented with one.
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Medical Test Evaluation

■ True Positives = Test states you have the disease 
when you do have the disease

■ True Negatives = Test states you do not have the 
disease when you do not have the disease

■ False Positives = Test states you have the disease 
when you do not have the disease

■ False Negatives = Test states you do not have the 
disease when you do
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Evaluating Medical Tests
■ Sensitivity =The probability of having a positive test 

result among those with a positive diagnosis for the 
disease
– Sensitivity 

= True Positives / True Positives + False Negatives

■ Specificity = The probability of having a negative test 
result among those with a negative diagnosis for the 
disease
– Specificity 

= True Negatives / True Negatives + False Positives


