
CHAPTER SEVEN

Modeling regulatory motifs

Sridhar Hannenhalli

Biological processes are mediated by specific interactions between cellular molecules (DNA,
RNA, proteins, etc.). The molecular identification mark, or signature, required for precise and
specific interactions between various biomolecules is not always clear, a comprehensive
knowledge of which is critical not only for a mechanistic understanding of these interactions
but also for therapeutic interventions of these processes. The biological problem we will
address here, stated in general terms, is: how do biomolecules accurately identify their binding
partners in an extremely crowded cellular environment? An important class of cellular
interactions concerns the recognition of specific DNA sites by various DNA binding proteins,
e.g. transcription factors (TF). Precisely how the TFs recognize their DNA binding sites with
high fidelity is an active area of research. While a detailed treatment of this question covers
several areas of investigation, we will focus on aspects of the TF–DNA recognition signal that
is encoded in the DNA binding site itself. In this chapter we will summarize a number of
approaches to model DNA sequence signatures recognized by transcription factor proteins.

1 Introduction

Most biological processes critically depend on specific interactions between
biomolecules. A key question in biology is how, in the overly crowded cellular
environment, these various interactions are accompished with high fidelity. Evidence
suggests highly developed mechanisms for trafficking, addressing, and recognizing
biomolecules within a cell. For instance, brewer’s yeast (Saccharomyces cerevisiae)
feeds on galactose, among other sugars. The yeast needs a mechanisms to sense the
presence of galactose in its environment and in response, turn on specific biological
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7 Modeling regulatory motifs 127

processes to harness galactose. In the presence of galactose, transcriptional regulator
protein GAL4 binds to a specific DNA sequence upstream of several genes, most
notably GAL2, involved in galactose metabolism [1]. This entire process, from the
sensing of galactose to transmitting information down the signal cascade that culmi-
nates in the binding of GAL4 to the GAL2 gene’s regulatory sequence and metaboliz-
ing galactose, requires many specific interactions between different types of molecules
including DNA, RNA, and proteins.

As another example, consider the well-studied JAK-STAT signal transduction path-
way which plays a critical role in cell fate decision and immune response in humans.
Much like galactose metabolism in yeast, the JAK-STAT system involves sensing
specific chemicals outside the cell, transmitting this information across the cell mem-
brane down to the regulatory regions of specific genes, to activate the response system
[2]. One can think of such signaling pathways as a relay involving specific interac-
tions starting with the interaction between extracellular chemicals and cell-membrane
receptors, culminating in the interaction between transcription factors and DNA in
gene regulatory sequences. Questions concerning the specificity of interaction between
biomolecules are open in most contexts and are areas of active research.

The problem of interaction specificity could be resolved from first principles if
we had two pieces of information, namely the location of an interaction partner and
certain identifying features of the partner. For instance, if you were to plan a meeting
with a stranger in a large city, you would need to know the approximate meeting
location (e.g. corner of 6th and Broad), as well as certain identifying features of this
person (e.g. red polka dot suit). A parallel in the cellular environment could be a
trans-membrane (location) protein with amino acid sequence HHRHK near the amino
terminus (identifying feature). In this example, the identifying feature could also be
expressed as a stretch of five positively charged and largely hydrophobic residues.
Alternatively, one of the interacting proteins may have a structural feature (the key)
which fits a complementary structure on another protein (the lock). These examples
provide three different ways of representing the identifying feature of the interacting
partner, or in other words, these examples are different “models” of the interaction
specificity. Based on the different models one can surmise that the task of modeling
substrate specificity can be extremely difficult, especially in the realm of proteins.
Indeed, the task is complex even for the much simpler case in which the substrate is a
nucleic acid molecule (DNA or RNA). While the general principles are common to both
proteins and nucleic acids, for the sake of simplicity, we will restrict the exposition
to nucleic acids hereafter. In particular, we will discuss the issue of modeling the
DNA sites recognized and bound by transcription factors (TF), i.e. transcription factor
binding sites (TFBS). To orient the reader, we next provide a brief introduction to
transcriptional regulation.
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128 Part II Gene Transcription and Regulation

Polymerase

Transcription Initiation Site

Adaptor
protein

Figure 7.1 Transcription factor proteins (filled ellipses) interact with binding sites (filled
rectangles) in the relative vicinity of a gene transcript (black rectangle). The transcription
factor binding sites can either be proximal to the transcript (within a few thousand
nucleotides) or far (several hundred thousand nucleotides). The interactions between
transcription factors is aided by other adaptor proteins. The DNA-bound transcription
factors interact with polymerase to regulate transcription.

How much, at what time, and where within an organism any gene product is pro-
duced is precisely regulated, and is critical to maintaining all life processes. While the
overall regulation of a gene product is executed at various levels – including splicing,
mRNA stability, export from nucleus to cytoplasm and translation – much of this
regulation is accomplished at the level of transcription. Transcriptional regulation is a
fundamental cellular process, and aberrations in this process underlie many diseases
[3]. For example, mutations in the Factor IX protein is known to cause hemophilia B.
Additionally, mutations in the regulatory region immediately upstream of Factor IX
gene can disrupt the binding of specific TF, which in turn dysregulates the transcription
of the gene, thus leading to hemophilia [3]. In eukaryotes, transcriptional regulation
is orchestrated by numerous TF proteins. For the most part, TFs regulate gene tran-
scription by binding to specific short DNA sequences in the relative vicinity of the
transcription start site of the target gene, and through interactions with each other as
well as with the polymerase enzyme. See Figure 7.1 for a schematic.

Precise and specific interaction between the TF and its cognate DNA binding site
is a critical aspect of transcriptional regulation. What is the identifying characteristic
of the DNA sites recognized by a TF protein? This question remains an open and
important one in modern biology. The specific TF–DNA interaction is determined not
only by the DNA sequence but also by a number of additional cellular factors. A full
description of these determinants is beyond the scope of this chapter. Here we focus on
the aspect of TF–DNA interaction that is encoded in the sequence of the DNA binding
site itself.
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7 Modeling regulatory motifs 129

In particular, we will focus on models of TF binding sites. Given several instances
of experimentally determined binding sites for a TF, a model is a succinct quantitative
description of the known binding sites, which not only may provide mechanistic insights
into TF–DNA interaction, but also helps identify novel binding sites. Although we have
focused our discussion only on TF binding sites, the discussion applies to any DNA
signal such as splice sites, polyA sites, and indeed more generally to signals in amino
acid sequences. Finally, the signal encoded in the DNA binding site provides only part
of the information required for specific interactions with the DNA binding protein. We
will conclude with a discussion of additional hallmarks of functional binding sites that
can be exploited specifically to identify functional TF binding sites in the genome.

2 Experimental determination of binding sites

In this section we will briefly summarize the experimental techniques used to determine
the DNA binding sites for a specific TF. The sequences obtained from these experiments
are then used to construct a model of TF binding. For a detailed review on this topic
we refer the reader to [4]. The experimental approaches to binding site determination
can be classified as in vitro and in vivo.

The common in vitro techniques include Systematic Evolution of Ligands by EXpo-
nential enrichment (SELEX) [5] and protein-binding DNA microarrays [6]. SELEX
works as follows. One begins by synthesizing a large library consisting of randomly
generated oligonucleotides of fixed length. The solution containing the oligonu-
cleotides is exposed to the TF of interest. Some of the oligonucleotides bind to the TF.
The oligomers that are bound by the TF can be separated from the rest (although not
perfectly) and a new solution is prepared that is enriched for the bound oligomers. This
process of binding to the TF and separating out the bound oligomers is repeated mul-
tiple times and in every new round the experimental conditions are varied so that the
increasingly stronger binding between the TF and oligomers is favored. Multiple rounds
of selection with increasing stringency for the binding results in a solution enriched
for oligonucleotides that bind to the TF with high affinity. These oligonucleotides are
then cloned and sequenced. In a related experimental techniuqe of protein-binding
DNA microarray, the DNA oligomers are immobilized on a glass surface to which a
flourescent-labeled TF is exposed. The specific oligomers that bind to the TF of interest
are detected through optical signal processing [6]. This approach obviates the need
for multiple rounds of enrichment as in SELEX, as well as the need for cloning and
sequencing. By their nature, the in vitro capture the protein–DNA binding in purified
form and in isolation, independent of the other cellular determinants of the binding.
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130 Part II Gene Transcription and Regulation

In vivo identification of binding sites is accomplished by two common techniques –
ChIP-chip and ChIP-seq. Both approaches require obtaining the nuclear DNA bound
by the TF of interest, followed by DNA digestion, which leaves the TF attached to
small stretches of DNA, and then using specific antibody to fish out the TF along with
the stretch of DNA bound to it. In the ChIP-chip (Chromatin immunoprecipitation
followed by microarray hybridization), the bound DNA is hybridized against a glass
array that contains a large set of sequences corresponding to various genomic locations.
Thus, the array elements that hybridize to the TF-bound DNA automatically provide
the information on the genomic location where the TF binds. In the second technique –
ChIP-seq (ChIP followed by high-throughput sequencing) – the microarray hybridiza-
tion step is replaced by direct sequencing of the TF-bound DNA. The sequences are
then mapped to the genome based on sequence similarity. In each of these approaches
the TF-bound region is detected with varying resolution, and additional techniques are
applied to more precisely map the boundaries of the TF binding sites.

Experimentally determined binding sites are compiled in various databases, most
notably TRANSFAC [7] and JASPAR [8]. TRANSFAC is a licensed database which
currently includes binding sites for over 1,000 TFs gleaned from the experimental
literature. Each individual binding site is assigned a quality score corresponding to
the strength of experimental evidence. JASPAR is a freely accessible resource which
includes information on ∼150 TFs, also curated from experimental literature, and is
based on a more stringent set of criteria as compared to TRANSFAC.

3 Consensus

For the rest of the chapter, we will assume that for a given TF we are provided
a set of binding sites of a fixed length, and we will focus on the task of model-
ing these known sites. Therefore, for a transcription factor F , assume that we are
given N examples of K bases long DNA sequences bound by F . Denote the N
sequences as X1, X2, . . . , X N . Denote the nucleotide base at position j of sequence
Xi by Xi, j , where Xi, j ∈ {A, C, G, T }. The DNA sequence characteristics that are
critical for the protein–DNA interaction have both biological and computational
implications. These characteristics should determine the representation of binding
specificity. Consider Example 7.1a in which we are provided with 10 experimentally
determined binding sites for the yeast TF Leu3 [9], and each site is 10 nucleotides
long.
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7 Modeling regulatory motifs 131

Example 7.1.
(a)

1 2 3 4 5 6 7 8 9 10
X1 C C G G T A C C G G
X2 C C T G T A C C G G
X3 C C G C T A C C G G
X4 C C G G A A C C G G
X5 G C G G T A C C G G
X6 C C G T T A C C G G
X7 C C G C A A C C G G
X8 C C T G A A C C G G
X9 G C G G T A A C G G
X10 C C G C T A C A G G

(b)

1 2 3 4 5 6 7 8 9 10
A 0.0 0.0 0.0 0.0 0.3 1.0 0.1 0.1 0.0 0.0
C 0.8 1.0 0.0 0.3 0.0 0.0 0.9 0.9 0.0 0.0
G 0.2 0.0 0.8 0.6 0.0 0.0 0.0 0.0 1.0 1.0
T 0.0 0.0 0.2 0.1 0.7 0.0 0.0 0.0 0.0 0.0

(c)
2

1bi
ts

0
5′ 1 2 3 9 104 5 6 7 8

A simple and common approach to summarize these known binding sites is called
the consensus representation in which we create a consensus string of length K and
place in position j the consensus nucleotide which occurs with the highest frequency
at position j in N binding sites. In Example 7.1a, for instance, at position 3 there are
8 Gs and 2 T s. Thus the consensus at position 3 is G. The consensus sequence of
these 10 known examples of binding sites is thus CCGGT ACCGG. Note that the
consensus sequence happens to be the same sequence as X1.

More formally, given N binding sites, each of length K , let Nx, j be the number
of binding sites sites having nucleotide x at position j , where x ∈ {A, C, G, T } and
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132 Part II Gene Transcription and Regulation

1 ≤ j ≤ K . The normalized frequency of nucleotide x at position j is denoted by
fx, j = (Nx, j )/N . Clearly,

∑

x∈{A,C,G,T }
fx, j = 1. (7.1)

The consensus sequence of these N binding sites is defined as the K -long nucleotide
sequence C1C2 · · · CK , in which C j is the nucleotide x that maximizes fx, j . The con-
sensus at each position in Example 7.1a is unambiguously defined. However, consider
a case where at some position there are 4 Cs, 5 Gs, 1 A and 0 T . In this case, assigning
a G as the consensus ignores the fact that nucleotide C is almost as likely as G. To
address this ambiguity one may use letter S at this position of the consensus string
where S represents strong bases C and G. Similarly, nucleotides A and G (purines)
together are represented by letter R. There is an International Union of Pure and
Applied Chemistry (IUPAC) letter code to denote each combination of nucleotides and
which is used to represent consensus in general [10].

Although quite useful for many practical situations, the consensus representation
is restrictive as it systematically ignores the rare bases at each position, which might
represent biologically important instances of binding sites. Next we discuss the Position
Weight Matrix representation of binding sites that addresses this specific shortcoming
of the consensus model.

4 Position Weight Matrices

The Position Weight Matrix (PWM) is currently the most common representation
of TF binding sites. Unlike the consensus approach, a PWM captures all observed
bases at each position. In its simplest form, a PWM is a probability matrix with 4
rows corresponding to the 4 nucleotide bases and K columns corresponding to each
position in the binding site. We will refer to rows 1 through 4 interchangeably as rows
A, C, G, T , respectively. The entry corresponding to the j th column (position) and
x th row (base) is fx, j , defined above as the frequency of x at position j among the
binding sites. The PWM corresponding to the binding sites in Example 7.1a is shown
in 7.1b.

Note that if there is an insufficient number of known binding sites, i.e. if N is
relatively small, then a particular nucleotide base may not be observed at a position.
This would result in fx, j = 0, which can be interpreted to imply that x is prohibited
at position j , even though we know that this is simply due to insufficient sampling of
sites and not because of a functional impossibility. A typical solution to deal with this
situation is to correct for potentially unobserved data by adding a prior (also known as
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7 Modeling regulatory motifs 133

pseudo count) to the observed nucleotide counts before computing the frequencies. A
simple approach is to add a count of 1 to each observed count, also called the Laplace
prior. If a Laplace prior is used in Example 7.1a, then the counts in the first column
become (1, 9, 3, 1) for (A, C, G, T), and the first column of the PWM in Example
7.1b becomes (0.071, 0.644, 0.214, 0.071). Formally, under the Laplace prior, the
frequencies are fx, j = (Nx, j + 1)/(N + 4).

There is a quantitative property of a PWM that corresponds to its usefulness in
modeling the TF–DNA binding preference. For instance, if the known binding sites
for a TF are highly dissimilar to each other, then there is very little knowledge to be
gained about the general binding preference. More specifcially, consider a particular
column j of a PWM. If each of the 4 nucleotides is equally likely to be observed
at that position, i.e. if fx, j = 0.25, for each nucleotide base x , then this column
conveys no information regarding the binding preference of the TF under considera-
tion. This intuitive notion of information contained in position j of a PWM can be
quantified formally using the Information Content, which is measured in bits and is
defined as

I j = 2 +
∑

x∈{A,C,G,T }
fx, j log2( fx, j ). (7.2)

Note that in the most informative case, when exactly one of the nucleotides, say A,
is observed at a position with f A, j = 1, fC, j = 0, fG, j = 0, fT, j = 0, then I j achieves
its maximum value of 2 bits.1 In the other extreme, when all nucleotides are equally
likely and fx, j = 0.25 ∀x ∈ {A, C, G, T }, then I j achieves its minimum value of 0
bits [11]. One can verify that any other value of probabilities yields a positive infor-
mation. Example 7.1c shows the Logo representation of the motif in Example 7.1b
depicting the information content at each position. The x-axis enumerates the bind-
ing site positions and the y-axis indicates the information content. The height of
each base corresponds to its relative frequency. The figure was generated using the
Weblogo tool at weblogo.berkeley.edu. For a more detailed discussion on information
content and another relative measure called Relative entropy, the reader is referred
to [12].

While the PWM is a simple, intuitive, and the most commonly used model of TF–
DNA interaction, its main drawback is that it assumes independence among different
positions in the binding site. Specifically, the preference for a nucleotide at one posi-
tion has no bearing on the nucleotide preferences at another position. Consider the
hypothetical Example 7.2 below which has six binding sites, each four nucleotides
long.

1 Here, the value of 0log20 is approximated to be 0.
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134 Part II Gene Transcription and Regulation

Example 7.2.

X1 C G G G
X2 C G T G
X3 C G G C
X4 A T G G
X5 A T G G
X6 A T G T

In the first column, nucleotides, C and A are equally likely, while in the second
column nucleotides G and T are equally likely. Based on this information and assuming
independence between these two columns, one would infer that the two binding sites
CGGG and CTGG are equally preferred. However, it is more likely that when there
is a C at the first position a G is preferred in the second position, and when there is
an A at the first position a T is preferred in the second position. In other words, the
first and second positions are not independent. A direct experimental measurement of
such dependence is laborious. Two specific experimental studies that infer dependence
between positions in binding sites can be found in [13] for bacterial Mnt repressor
binding sites and in [14] for Egr1 transcription factor binding sites.

5 Higher-order PWM

In Example 7.2, there is likely to be dependence between the first two positions. In
this case the preferred binding sites can be better modeled, and thus better predicted,
if we consider the first two nucleotides together. For instance, CG and AT are the most
likely dinucleotides at the first two positions. In general, if we want to incorporate
possible dependencies between nucleotides at every pair of adjacent positions, we can
extend the single nucleotide PWM with 4 rows and K columns to a dinucleotide
PWM with 16 rows corresponding to all 16 nucleotide combinations and K − 1
columns corresponding to all dinucleotide positions. Therefore, in the first column
of Example 7.2, the CG and AT dinucleotides will have large frequency values, each
“close” to 0.5 each,2 and all other 14 dinucleotides will have low values, “close” to
zero. This dinucleotide-based PWM has also been referred to as the Position Weight
Array [15, 16]. One can extend the Position Weight Array to capture even higher-order
dependencies, say among L consecutive nucleotides. This corresponds to enumerating
at every position of the binding site the L nucleotides-long sequences starting at the

2 The probabilities will be “close” to 0.5, as opposed to being exactly 0.5, if we add small pseudocounts for the
unobserved dinucleotides.
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7 Modeling regulatory motifs 135

position among all binding sites, i.e. from positions 1 through L , positions 2 through
L + 1, and so on till positions K − L + 1 through K . This results in a PWM with
4L rows (corresponding to all possible K -long sequences) and K − L + 1 columns
for any L ≥ 1, where L represents the number of adjacent nucleotides considered
together. This model is equivalent to a Markov Model of order L − 1, which provides
the probability of observing a nucleotide at any position based on the previous L − 1
nucleotides. See Figure 7.3b for an example of a first-order Markov Model. The Markov
Model is a general statistical tool and is often used to model a variety of molecular
sequences.

The main limitation of these higher-order PWMs is a lack of sufficient data, i.e. small
values of N . For instance, we cannot reliably infer the preference for a dinucleotide
among the 16 possible choices based on only 6 sequences, as in Example 7.2. Moreover,
high-order PWMs are still limited in that they do not directly capture the dependence
between non-adjacent nucleotide positions, for instance between positions 1 and 3,
independent of position 2. In theory, this can be remedied by explictly enumerating
nucleotide combinations for various combinations of positions, although such models
suffer from insufficient data to a much greater extent than higher-order PWM models.
In the next section we will discuss richer models of TF–DNA binding preferences that
attempt to maximize the information captured from the data.

6 Maximum dependence decomposition

The Maximum Dependence Decomposition (MDD) approach, proposed in Genscan
[16], explicitly estimates the extent to which the nucleotide at position j depends on the
nucleotide at position i . Specifically, MDD estimates the extent to which the nucleotide
at position j depends on whether the nucleotide at position i is the consensus (most
frequent) nucleotide for that position or a non-consensus nucleotide. For each i all
binding site sequences are divided into two groups, Ci and Ci , depending on whether
the nucleotide at position i is the consensus or a non-consensus base, respectively.
Within each group the nucleotide frequencies are computed at every position j . For a
given position j , the two sets of frequencies are compared using the χ2 statistic [17].
If position j is independent of position i , then we expect the two sets of nucleotide fre-
quencies to be fairly similar; however, if the two sets of frequencies differ significantly
from each other, it would suggest that nucleotide preference at position j depends on
the nucleotide at position i . Let f A, fC , fG , and fT be the normalized frequencies
(number of each base divided by the total number of sequences) of the four bases at
position j among the sequences in Ci . Let N be the total number of sequences in Ci . If
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136 Part II Gene Transcription and Regulation

the four bases were distributed identically in the two sets of sequences Ci and Ci , then
we would expect the number of the four bases at position j among the sequences in Ci

to be N ∗ f A, N ∗ fC , N ∗ fG , and N ∗ fT . Let NA, NC , NG , and NT be the observed
number of the four bases at position j among the sequences in Ci . In this context, the
χ2 statistic is defined as:

(N ∗ f A − NA)2

N ∗ f A
+ (N ∗ fC − NC )2

N ∗ fC
+ (N ∗ fG − NG)2

N ∗ fG
+ (N ∗ fT − NT )2

N ∗ fT
(7.3)

The greater the difference in the two sets of nucleotide frequencies, the higher the
value of χ2 statistic. If the statistic indicates a significant difference3 between the two
frequency distributions then the position j is said to depend on position i . For example,
for a set of 20 sequences, if position 1 includes 12 As and 8 Gs, then the consensus C1

is A. Now for the 12 sequences in which the nucleotide at position 1 is an A, assume
that at position 2, 8 have a C and 4 have a T. On the other hand, for the 8 sequences in
which the nucleotide at position 1 is a G, at position 2, 7 have a T and 1 has a C. For
the sequences with C1 = A, the counts for (A, C, G, T) at position 2 are (0, 8, 0, 4), and
for the other 8 sequences the nucleotide counts at position 2 are (0, 1, 0, 7). Intuitively,
the two sets of counts look very different from each other, and the χ2 statistic formally
quantifies this intuition.

Denote the χ2 statistic quantifying the dependence of position j on position i as
χ2( j | i). The MDD approach proceeds iteratively as follows.

1 Compute Si =
∑

j ̸=i χ2( j, i) to capture the total dependence on position i .
2 Among all K positions, select position i with the maximum value of Si , and partition

all sequences into two parts based on whether they have Ci or Ci at position i .
3 Repeat steps 1 and 2 separately for each of the two sets of sequences obtained in

step 2.
4 Stop if there is no significant dependence, or if there is an insufficient number4 of

sequences in the current subset. In either case, construct a standard PWM for the
remaining subset of sequences.

Figure 7.2a illustrates the MDD modeling procedure. The above procedure decom-
poses the entire binding site data set into a tree-like structure. To test whether a given
sequence X fits the model, as illustrated in Figure 7.2b, one proceeds down the tree,

3 If there is no real difference between the two frequency distributions then the χ2 statistic is expected to follow
the so-called χ2 distribution. By comparing the computed χ2 value to the expected distrbution, one can
compute the probability that the two distributions are identical. This probability is called the P-value. If the
P-value is small, say below 5%, then we can say that the two distributions are significantly different.

4 We leave this purposefully vague, as there is no formal rule to define this. Essentially, if the number of
remaining sequences is small, say below 5, then it does not pay to further partition them.
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7 Modeling regulatory motifs 137

(a) Modeling (b) ScoringAACGTG
AGGCTG
AGCTTT

TACGTG
CACGGT
GATGGG

AACGTG CACGTG
TGGGTG

GACTTG

AGGCTG

AACGTG

AACGTG AAGGTG
AGGCTG

AATGTG

AGCCTG

AACGTG

Insufficient
data

PWM1 PWM2

Insufficient
dependence

Position 3 has non-consensus base.
Follow right subtree.

Arrived at a leaf. Score X using PWM2

Position 1 has consensus base ‘A’.
Follow left subtree.

X = AAGGTG

Figure 7.2 The figure, adapted from [16], illustrates the maximal dependency decomposition
(MDD) procedure. (a) Modeling. Starting with all binding sites, maximum dependency is
detected for position 1 with consensus “A.” The sites are then partitioned based on whether or
not the nucleotide at position 1 is an “A.” Among the sites with “A” in the first position,
maximum dependency is detected for position 3 with consensus “C.” The sites are further
partitioned based on whether or not the nucleotide at position 3 is a “C.” The two partitions
are not partitioned any further, however, because of either insufficient data or insufficient
dependency. The entire MDD model is built following this procedure. (b) Scoring. Given a
sequence X , one proceeds down the left subtree because the first base of X is an “A,”
followed by the right subtree because the third base is not a “C.” At this stage, because a
leaf is encountered, X is scored using PWM2, corresponding to the current leaf.

where a decision is made at each internal branching point based on whether a spe-
cific position of X is a consensus base or not, guiding the search down the appropriate
descendent branches of the tree. The search eventually stops at a leaf which corresponds
to a PWM, the one that “best” represents the sequence X .
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138 Part II Gene Transcription and Regulation

Unlike the Position Weight Array mentioned above, which assumes dependence
between every pair of adjacent positions, MDD is not restricted to adjacent positions
and explicitly evaluates whether there is a statistical dependence between any two
positions. However, it is easy to see that MDD requires a large number of sequences.

7 Modeling and detecting arbitrary dependencies

In this section we will discuss a general Bayesian approach developed in [18] to model
dependencies between arbitrary pairs of binding site positions. In this approach, each
of the K binding site positions may depend on any arbitrary set of other positions.
This scenario can be best illustrated using a graph structure. Consider a network with
K nodes (s1, s2, · · · , sK ) corresponding to the positions i through K , where xi is a
random variable representing the nucleotide at position i . We draw an arrow (a directed
edge) from node si to s j if the nucleotide at position j depends on the nucleotide at
position i ; dependence can be determined using the χ2 statistic. Figure 7.3 shows a
few dependency structures for K = 4. Consider the simplest case, with 4 nodes and no
edges depicted in Figure 7.3a, such that each of the nucleotides is independent, which
is precisely the PWM model. In probabilistic terms, the probability of observing a
specific binding site x1x2x3x4 is the product of the four independent probabilities,
i.e. P(x1x2x3x4) = P(x1)P(x2)P(x3)P(x4), where P(xi ) is the entry in the PWM at
column i , for nucleotide xi .

Now consider the dependency shown in Figure 7.3b with three edges. The
first position is independent of any other position, while every other posi-
tion depends on the previous position. In probabilistic terms, P(x1x2x3x4) =
P(x1)P(x2|x1)P(x3|x2)P(x4|x3), where the notation P(u|v) represents the probability
of u conditional on the value of v. This is precisely the first-order Markov Model and is
similar to the Weighted Array Matrix model mentioned above. The probability of each
nucleotide at the first position is calculated in a fashion identical to that of a PWM.
The conditional probabilities can then be derived from the given set of sites in a similar
fashion. For instance, if among 10 sequences that have an A at the first position, three
have a C at the second position, then P(x2 = C | x1 = A) = 0.3.

Figure 7.3c depicts a more complex dependency structure among the binding site
positions. In this case position 2 depends on position 1. Position 3 depends on both
positions 1 and 4, while positions 1 and 4 are independent of any other positions. We
can write out the probability of observing a DNA sequence x1x2x3x4 as P(x1x2x3x4) =
P(x1)P(x2 | x1)P(x3 | x1, x4)P(x4). Similar to the previous case, we can compute the
conditional probability P(x3|x1, x4) by computing the fraction of different nucleotides
at position 3 for various combinations of dinucleotides at positions 1 and 4. Finally,
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7 Modeling regulatory motifs 139

S1(a)

(b)

(c)

(d)

S2 S3 S4

S1 S2 S3 S4

S1

S1

S2

S2

S3

T

S3

S4

S4

Figure 7.3 The figure illustrates a few possible dependency structures between the binding
site positions (adapted from [18]).

Figure 7.3d illustrates a scenario where the nucleotides at the four bases are independent
of each other but depend on an extrinsic variable T . For instance, certain TF are known
to recognize distinct classes of motifs and the variable T may represent the motif class
which in turn determines the nucleotide preferences at the four positions. It is not
difficult to see that any arbitrary dependency structure defines a unique model, and
given a model, one can precisely estimate the probability of observing a DNA sequence.
However, there are a large number of possible dependency structures, and determining
all possible dependency structures is not at all trivial. Incidentally, this problem is also
encountered in other areas of computational biology, notably when inferring regulatory
networks from gene expression data. The issue of searching for the optimal model is
discussed in more detail in chapter 16 on biological network inference.

8 Searching for novel binding sites

The eventual goal of any model of TF–DNA binding is to efficiently and accurately
assess whether an arbitrary sequence is likely to bind to the TF, and more generally,
to identify potential binding site locations along a long stretch of DNA, possibly an
entire genome. For consensus models, the search entails a simple scan of the DNA
sequences for a perfect match, or a match with a limited number of mismatches to the
consensus sequence. However, in the case of PWMs, detecting the binding sites is less
straightforward.
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140 Part II Gene Transcription and Regulation

8.1 A PWM-based search for binding sites
Essentially each sequence is assigned a “match” score which represents quantita-
tively its similarity to the PWM. For a PWM, a scoring function can simply be the
product of nucleotide frequencies at each position. For instance, the match score for
CCGGTACCGG (sequence X1 in Example 7.1a) and using the PWM in Example 7.1b
can be computed as 0.8 × 1.0 × 0.8 × 0.6 × 0.7 × 1.0 × 0.9 × 0.9 × 1.0 × 1.0 =
0.22. This quantity represents the probability that the sequence confers to, or is gen-
erated by, the PWM. Such a raw score is interpreted (is this score sufficiently large
to indicate a match of the PWM to the binding site?) in the context of a specific
background. For instance, a PWM in which, at every position, the bases “C” or “G”
have the highest probability, is expected to achieve a high raw score while searching a
region of the genome that is composed mostly of “C” and “G”. In this case, an even
higher raw score should be required.

Various software tools employ different strategies to select a threshold for the raw
score. The MATCH software adapted from [19] employs the following strategy. Let
r denote the raw match score for a PWM for a binding site. The raw score r is
first converted into a percentile score p. If the minimum and maximum achievable
scores by the PWM are rmin and rmax , then p = (r − rmin)/(rmax − rmin). MATCH
then searches an input sequence for matches whose percentile score surpasses a user-
defined threshold. The default thresholds are based on a carefully chosen background
to optimize either the false-negative rate, the false-positive rate, or the sum of both
types of errors. Another strategy is to convert the raw score into a P-value, which
estimates the random expectation of observing the raw score (or higher). For instance,
Levy and Hannenhalli use a direct empirical approach. For a PWM, raw scores for
every position on the entire genome (of the species of interest) on either strand are
computed. This empirically estimated background distribution of raw scores provides
a direct way to compute the frequency with which a score of at least r is expected by
chance. If a score of at least r is achieved Q times, then the P-value of this score is
estimated as Q/L , where L is the total length of the genome including both strands
[20]. The other models that incorporate higher-order dependency between positions
can be used to assign a score to novel DNA sequences analogously, and will not be
discussed here.

8.2 A graph-based approach to binding site prediction
In Example 7.1a, it is intuitive that the first sequence X1 = CCGGT ACCGG should
have a high-affinity interaction with the TF, since it is not only known to bind to the
TF, but it is also the consensus sequence. Given a model, we can compute a score
for a sequence indicative of the binding probability or binding affinity. We discussed
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7 Modeling regulatory motifs 141

above how this score is computed for a PWM. While in Example 7.1a, the consensus
sequence happens to be among one of the sequences known to bind the TF, this is
often not the case. More problematic and perhaps counterintuitive is the fact that with
probabilistic models, such as PWM, a sequence that is not among the known examples
may score better than a sequence known to bind the TF. Naughton et al. provide a
simple illustrative example [21]. Consider three known examples of binding sites for
a TF – AAA, AAA, and AGG. If we construct a PWM based on these three sequences,
the score for sequence AAG would be 1.0 × 0.67 × 0.33 = 0.22 while the score for
AGG will be 1.0 × 0.33 × 0.33 = 0.11. Interestingly, the sequence AAG, which is not
known to bind to the TF, has a higher score than the sequence AGG, which is known to
bind the TF. The problem is that in order to score a sequence, the probabilistic models
use “average” properties of the known sites and not the known sites themselves.
To address this shortcoming of probabilistic models, Naughton et al. proposed a
graph-based approach for scoring a sequence directly from the known binding sites
without building an explicit model. The intuition behind their approach is as follows.
Assume that we wish to score a sequence X using N distinct sequences known to
bind to the TF. Each of the N sequences additively contributes to the score for X , and
the individual score contribution is a product of two components. The first component
is proportional to the similarity between the sequences X and Y , where Y is one of
the N sequences. The second component is proportional to the number of times Y
occurs among the known binding sites. Thus the score contribution is high if there is
a sequence very similar to X among the known sequences and there are many known
instances of this sequence. The details of the precise function used can be found in [21].

9 Additional hallmarks of functional TF binding sites

TF binding sites are typically short (5–15 bp) and various binding sites for a TF
can vary substantially. The DNA binding site sequence alone often does not contain
sufficient information to explain the specificity with which a TF binds to its cognate
binding sites. Thus, on the one hand, there are numerous locations in a genome that
harbor DNA sequences strongly matching the TF–DNA binding model, and yet do not
seem to bind to the TF in experiments; on the other hand, there are numerous locations
experimentally known to be bound to a TF and yet which do not contain any sequences
that could be predicted by the TF–DNA interaction model. Therefore, the match to a
TF–DNA model, such as a PWM, is only one of the many determinants of functional
TF–DNA interactions. There are several other hallmarks of TF binding sites that can
be employed to improve the accuracy of binding site identification. Below we briefly
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142 Part II Gene Transcription and Regulation

mention two such features. Additional determinants of functional TF–DNA interaction
are discussed below.

9.1 Evolutionary conservation
Consider a region of the genome that encodes for an important organismal function.
Any mutation in this region affecting the specific function may be deleterious to the
fitness of the organism and should be purged by evolution. In other words, such a
region is likely to be evolving under purifying selection and will thus be conserved
across species during evolution. The same principle applies to regulatory regions of
the genome that harbor TF binding sites. Phylogenetic footprints are non-protein-
coding regions of the genome that are highly conserved and are much more likely to
be evolving under purifying selection [22]. Due to the recent availability of numer-
ous alignable genome sequences, phylogenetic footprinting has been widely used to
identify binding sites [20, 23, 24]. For a detailed review of phylogenetic footprinting
we refer the reader to [25]. Although using evolutionary conservation is an effective
way to reduce the false-positive rate in binding site prediction, exclusive reliance on
conservation is limited for two reasons. First, conserved regions may sometimes be
functionally neutral and thus may not harbor an important binding site [26]. Second,
several functional binding sites are known not to be conserved, as shown by several
studies [27, 28].

9.2 Modular interactions between TFs
Eukaryotic gene regulatory programs achieve complexity through combinatorial inter-
actions among TF. For instance, the expressions of some of the Drosophila genes
involved in development are regulated through combinatorial interactions among five
TF proteins, Bcd, Cad, Hb, Kr, and Kni [29]. Consistent with the interactions between
the TFs, the binding sites for these TF occur in clusters in the regulatory regions of the
genes [30]. It seems that binding sites that occur in clusters are more likely to be func-
tional. Thus the prediction of individual binding sites can be improved when subsumed
within a search for binding site clusters. Several tools have been developed to detect
significant clusters of binding sites in the genome [31, 32]. A cluster of functionally
interacting binding sites, typically with multiple instances in the genome (presumably
regulating several functionally related genes) is referred to as a cis-regulatory module
(CRM) [33, 34]. Knowledge of CRMs can aid in accurate identification of individual
binding sites [35]. Numerous computational approaches have been proposed to iden-
tify CRMs [25, 36–38]. Studies suggest that the binding of a TF to a binding site may
depend on the presence or absence of binding sites for other TFs in the relative vicinity
[39, 40]. Thus binding sites for a TF can be predicted with greater accuracy if one takes
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7 Modeling regulatory motifs 143

into account the presence/absence of binding sites of specific interacting TF. Binding
models have been proposed to exploit such sequence contexts [41, 42].

DISCUSSION

The general problem of accurately identifying transcription factor binding sites is
important for a mechanistic understanding of transcriptional regulation. In this
chapter we have focused on the narrower problem of modeling the TF–DNA
interaction based only on a set of experimentally determined binding site
sequences without any other information about the genomic or cellular context.
An ideal model should be such that (1) the true DNA binding sites fit the model
very well, i.e. the model is sensitive, and (2) the DNA sequences that are known
not to bind the TF should not fit the model, i.e. the model is specific. Moreover,
the model should be biologically interpretable. The PWM model, while being
simple, does not capture potential dependencies between binding site positions.
A full dependence model, on the other hand, is difficult to estimate reliably based
only on a small number of exemplar binding sites. Despite the efforts and
advances made over the last several years our ability to predict binding sites on a
genome scale remains unsatisfactory.

Ultimately, any sequence-based model of TF–DNA interaction does not capture
the inherently dynamic cellular state. For instance, how tightly the DNA at any
given location on the chromosome is packaged on the nucleosomes, critically
determines the TF–DNA interaction and, more generally, transcriptional
regulation [43, 44]. It is possible that even a high-affinity binding site may not
bind the TF, if the binding site location is tightly wrapped around a nucleosome,
which are the basic unit of DNA packaging. Narlikar et al. were able to
significantly improve the de novo motif discovery accuracy by exploiting
nucleosome occupancy [45]. Histone modifications can also help identify the
condition-specific chromatin structure and can help improve the genome-wide
identification of binding sites. Recent application of high-throughput
technologies, most notably ChIP-seq [46], have been used to generate
genome-wide maps of histone modifications [47–49]. Lastly, post-translational
modification states of TF proteins can critically alter the TF–DNA interaction [50].
However, how these modifications affect TF–DNA interaction is not well
understood. Improvements in computational modeling of TF–DNA interaction is
likely to come from a better biological understanding of these various
determinants of TF–DNA interactions coupled with the development of tools that
can integrate the heterogeneous information.
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144 Part II Gene Transcription and Regulation

QUESTIONS

(1) Consider the following probability matrix representing the DNA binding specificity of a
transcription factor.

1 2 3 4 5
A 0.01 0.10 0.97 0.95 0.50
C 0.03 0.05 0.01 0.01 0.10
G 0.95 0.05 0.01 0.03 0.10
T 0.01 0.80 0.01 0.01 0.30

Calculate the information content (IC) for position 3 and position 5. Briefly explain what
information content means and why there is such a difference in this value between
positions 3 and 5. In other words, what characteristic of position 5 makes its IC so low,
while the IC of position 3 is so high?

(2) What is the consensus binding site for the transcription factor in problem (1)?

(3) Based on the consensus sequence, can you find the most likely binding sites for the TF in
the following DNA sequence: ACCAAGTAGATTACTT? Consider both the forward and
reverse strands. Now which of these sites is the most likely if you consider the probability
matrix above?

(4) Analogous to transcription factors, which bind to DNA, RNA binding proteins (RBP) bind to
specific RNA molecules, such as mRNA. They regulate critical aspects of
post-transcriptional processing of the mRNA. Much like TF–DNA interaction, RBP–RNA
interaction is believed to be specific. What aspects of the target mRNA are likely to be
important for specific RBP–RNA interaction?
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