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related to this new field has been surging,
and now comprise almost 2% of the 
annual total of papers in PubMed.

This unexpected union between the two
subjects is attributed to the fact that life 
itself is an information technology; an 
organism’s physiology is largely deter-
mined by its genes, which at its most basic
can be viewed as digital information.At the 
same time, there have been major advances
in the technologies that supply the initial
data; Anthony Kervalage of Celera recent-
ly cited that an experimental laboratory
can produce over 100 gigabytes of data a
day with ease [5]. This incredible pro-
cessing power has been matched by devel-
opments in computer technology; the most
important areas of improvements have 
been in the CPU, disk storage and Internet,
allowing faster computations, better data
storage and revolutionalised the methods
for accessing and exchanging data.

1.1 Aims of Bioinformatics
In general, the aims of bioinformatics are
three-fold. First, at its simplest bioinfor-
matics organises data in a way that allows
researchers to access existing information
and to submit new entries as they are 
produced, e.g. the Protein Data Bank for 
3D macromolecular structures [6, 7]. While
data-curation is an essential task, the in-
formation stored in these databases is 
essentially useless until analysed. Thus the
purpose of bioinformatics extends much
further. The second aim is to develop tools
and resources that aid in the analysis of 
data. For example, having sequenced a par-
ticular protein, it is of interest to compare it
with previously characterised sequences.
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1. Introduction

Biological data are being produced at a
phenomenal rate [1]. For example as 
of April 2001, the GenBank repository of
nucleic acid sequences contained
11,546,000 entries [2] and the SWISS-
PROT database of protein sequences con-
tained 95,320 [3]. On average, these databa-
ses are doubling in size every 15 months [2].
In addition, since the publication of 
the H. influenzae genome [4], complete 
sequences for nearly 300 organisms have
been released, ranging from 450 genes to
over 100,000. Add to this the data from the
myriad of related projects that study gene
expression, determine the protein structu-
res encoded by the genes, and detail how
these products interact with one another,
and we can begin to imagine the enormous
quantity and variety of information that is
being produced.

As a result of this surge in data, compu-
ters have become indispensable to biologi-
cal research. Such an approach is ideal 
because of the ease with which computers
can handle large quantities of data and 
probe the complex dynamics observed in
nature. Bioinformatics, the subject of the
current review, is often defined as the appli-
cation of computational techniques to 
understand and organise the information
associated with biological macromolecules.
Fig. 1 shows that the number of papers 
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This needs more than just a simple text-
based search, and programs such as FASTA
[8] and PSI-BLAST [9] must consider what
constitutes a biologically significant match.
Development of such resources dictates 
expertise in computational theory, as well
as a thorough understanding of biology.
The third aim is to use these tools to ana-
lyse the data and interpret the results in a
biologically meaningful manner. Traditio-
nally, biological studies examined individu-
al systems in detail, and frequently com-
pared them with a few that are related. In
bioinformatics, we can now conduct global
analyses of all the available data with the
aim of uncovering common principles that
apply across many systems and highlight
novel features.

In this review, we provide a systematic
definition of bioinformatics as shown in
Box 1. We focus on the first and third aims
just described, with particular reference to
the keywords: information, informatics,
organisation, understanding, large-scale
and practical applications. Specifically, we
discuss the range of data that are currently
being examined, the databases into which
they are organised, the types of analyses
that are being conducted using transcrip-
tion regulatory systems as an example, and

finally some of the major practical applica-
tions of bioinformatics.

2. “…the INFORMATION 
associated with these 
Molecules…”

Table 1 lists the types of data that are 
analysed in bioinformatics and the range of
topics that we consider to fall within the
field. Here we take a broad view and in-
clude subjects that may not normally be 
listed. We also give approximate values 
describing the sizes of data being discussed.

We start with an overview of the sources
of information. Most bioinformatics analy-
ses focus on three primary sources of data:
DNA or protein sequences, macromolecu-
lar structures and the results of functional
genomics experiments. Raw DNA se-
quences are strings of the four base-letters
comprising genes, each typically 1,000 bases
long. The GenBank [2] repository of
nucleic acid sequences currently holds a 
total of 12.5 billion bases in 11.5 million
entries (all database figures as of April

2001).At the next level are protein sequenc-
es comprising strings of 20 amino acid-
letters. At present there are about 400,000
known protein sequences [3], with a typical
bacterial protein containing approximately
300 amino acids. Macromolecular struc-
tural data represents a more complex form
of information. There are currently 15,000
entries in the Protein Data Bank, PDB 
[6, 7], containing atomic structures of pro-
teins, DNA and RNA solved by x-ray
crystallography and NMR. A typical PDB
file for a medium-sized protein contains the
xyz-coordinates of approximately 2,000
atoms.

Scientific euphoria has recently centred
on whole genome sequencing. As with the
raw DNA sequences, genomes consist of
strings of base-letters, ranging from 1.6 
million bases in Haemophilus influenzae
[10] to 3 billion in humans [11, 12]. The 
Entrez database [13] currently has com-
plete sequences for nearly 300 archaeal,
bacterial and eukaryotic organisms. In 
addition to producing the raw nucleotide
sequence, a lot of work is involved in 
processing this data. An important aspect
of complete genomes is the distinction 
between coding regions and non-coding 
regions -‘junk’ repetitive sequences making
up the bulk of base sequences especially in
eukaryotes. Within the coding regions,
genes are annotated with their translated
protein sequence, and often with their 
cellular function.

Fig. 1 Plot showing the growth of scientific publications in bioinformatics between 1973 and 2000. The histogram bars
(left vertical axis) counts the total number of scientific articles relating to bioinformatics, and the black line (right vertical
axis) gives the percentage of the annual total of articles relating to bioinformatics. The data are taken from PubMed.

Bioinformatics – a Definition1

(Molecular) bio – informatics: bioinfor-
matics is conceptualising biology in
terms of molecules (in the sense of Phy-
sical chemistry) and applying “informa-
tics techniques” (derived from disci-
plines such as applied maths, computer
science and statistics) to understand and
organise the information associated
with these molecules, on a large scale. In
short, bioinformatics is a management
information system for molecular biolo-
gy and has many practical applications.

1As submitted to the Oxford English 
Dictionary.
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More recent sources of data have been
from functional genomics experiments, of
which the most common are gene expres-
sion studies.We can now determine expres-
sion levels of almost every gene in a given
cell on a whole-genome level, however
there is currently no central repository for
this data and public availability is limited.
These experiments measure the amount of
mRNA that is produced by the cell [14-18]
under different environmental conditions,
different stages of the cell cycle and differ-
ent cell types in multi-cellular organisms.
Much of the effort has so far focused on the
yeast [19-24] and human genomes [25, 26].
One of the largest dataset for yeast has 
made approximately 20 time-point meas-
urements for 6,000 genes [19]. However,
there is potential for much greater quan-

tities of data when experiments are con-
ducted for larger organisms and at more 
time-points.

Further genomic-scale data include 
biochemical information on metabolic 
pathways, regulatory networks, protein-
protein interaction data from two-hybrid
experiments, and systematic knockouts of
individual genes to test the viability of an
organism.

What is apparent from this list is the 
diversity in the size and complexity of dif-
ferent datasets. There are invariably more 
sequence-based data than others because
of the relative ease with which they can be
produced.This is partly related to the great-
er complexity and information-content of
individual structures or gene expression 
experiments compared to individual se-

quences. While more biological informa-
tion can be derived from a single structure
than a protein sequence, the lack of depth
in the latter is compensated by analysing
larger quantities of data.

3. “… ORGANISE the Infor-
mation on a LARGE SCALE…”
3.1 Redundancy and Multiplicity 
of Data
A concept that underpins most research
methods in bioinformatics is that much of
the data can be grouped together based on
biologically meaningful similarities. For 
example, sequence segments are often 
repeated at different positions of genomic
DNA [27]. Genes can be clustered into 
those with particular functions (eg enzy-
matic actions) or according to the meta-
bolic pathway to which they belong [28],
although here, single genes may actually
possess several functions [29]. Going 
further, distinct proteins frequently have
comparable sequences – organisms often
have multiple copies of a particular gene
through duplication and different species
have equivalent or similar proteins that 
were inherited when they diverged from
each other in evolution. At a structural 
level, we predict there to be a finite number
of different tertiary structures – estimates
range between 1,000 and 10,000 folds 
[30, 31] – and proteins adopt equivalent
structures even when they differ greatly in
sequence [32]. As a result, although the
number of structures in the PDB has 
increased exponentially, the rate of discov-
ery of novel folds has actually decreased.

There are common terms to describe the
relationship between pairs of proteins or
the genes from which they are derived:
analogous proteins have related folds, but
unrelated sequences, while homologous
proteins are both sequentially and structu-
rally similar. The two categories can some-
times be difficult to distinguish especially if
the relationship between the two proteins
is remote [33, 34]. Among homologues, it is
useful to distinguish between orthologues,
proteins in different species that have evolv-

Table 1 Sources of data used in bioinformatics, the quantity of each type of data that is currently (April 2001) available,
and bioinformatics subject areas that utilize this data.
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ed from a common ancestral gene, and 
paralogues, proteins that are related by 
gene duplication within a genome [35].
Normally, orthologues retain the same 
function while paralogues evolve distinct,
but related functions [36].

An important concept that arises from
these observations is that of a finite “parts
list” for different organisms [37-39]: an 
inventory of proteins contained within an
organism, arranged according to different
properties such as gene sequence, protein
fold or function. Taking protein folds as an
example, we mentioned that with a few 
exceptions, the tertiary structures of pro-
teins adopt one of a limited repertoire 
of folds. As the number of different fold 
families is considerably smaller than the
number of genes, categorising the proteins
by fold provides a substantial simplification
of the contents of a genome. Similar sim-
plifications can be provided by other attri-
butes such as protein function. As such, we
expect this notion of a finite parts list to 
become increasingly common in future 
genomic analyses.

Clearly, an essential aspect of managing
this large volume of data lies in developing
methods for assessing similarities between
different biomolecules and identifying 
those that are related. There are well-docu-
mented classifications for all of the main 
types of data we described earlier. Al-
though detailed descriptions of these clas-
sification systems are beyond the scope of
the current review, they are of great impor-
tance as they ease comparisons between
genomes and their products. Links to the
major databases are available from our
supplementary website.

3.2 Data Integration
The most profitable research in bioinfor-
matics often results from integrating mul-
tiple sources of data [40]. For instance, the
3D coordinates of a protein are more useful
if combined with data about the protein’s
function, occurrence in different genomes,
and interactions with other molecules. In
this way, individual pieces of information
are put in context with respect to other 
data. Unfortunately, it is not always

straightforward to access and cross-
reference these sources of information be-
cause of differences in nomenclature and
file formats.

At a basic level, this problem is fre-
quently addressed by providing external
links to other databases. For example in
PDBsum, web-pages for individual struc-
tures direct the user towards corresponding
entries in the PDB, NDB, CATH, SCOP
and SWISS-PROT databases. At a more
advanced level, there have been efforts to
integrate access across several data sources.
One is the Sequence Retrieval System, SRS
[41], which allows flat-file databases to be
indexed to each other; this allows the user
to retrieve, link and access entries from
nucleic acid, protein sequence, protein 
motif, protein structure and bibliographic
databases. Another is the Entrez facility
[42], which provides similar gateways to
DNA and protein sequences, genome 
mapping data, 3D macromolecular structu-
res and the PubMed bibliographic database
[43].A search for a particular gene in either
database will allow smooth transitions to
the genome it comes from, the protein 
sequence it encodes, its structure, biblio-
graphic reference and equivalent entries for
all related genes. In our own group, we have
developed the SPINE [44] and PartsList
[39] web resources; these databases inte-
grate many types of experimental data and
organise them using the concept of the 
finite “parts list” we described above.

4. “…UNDERSTAND and 
Organise the Information…”
Having examined the data, we can discuss
the types of analyses that are conducted.As
shown in Table 1, the broad subject areas in
bioinformatics can be separated according
to the type of information that is used. For
raw DNA sequences, investigations involve
separating coding and non-coding regions,
and identification of introns, exons and 
promoter regions for annotating genomic
DNA [45, 46]. For protein sequences, ana-
lyses include developing algorithms for 
sequence comparisons [47], methods for

producing multiple sequence alignments
[48], and searching for functional domains
from conserved sequence motifs in such 
alignments. Investigations of structural 
data include prediction of secondary and
tertiary protein structures, producing 
methods for 3D structural alignments [49,
50], examining protein geometries using 
distance and angular measurements, calcu-
lations of surface and volume shapes and
analysis of protein interactions with other
subunits, DNA, RNA and smaller mole-
cules. These studies have lead to molecular
simulation topics in which structural data
are used to calculate the energetics in-
volved in stabilising macromolecular struc-
tures, simulating movements within macro-
molecules, and computing the energies 
involved in molecular docking. The increa-
sing availability of annotated genomic 
sequences has resulted in the introduction
of computational genomics and proteomics
– large-scale analyses of complete genomes
and the proteins that they encode. Re-
search includes characterisation of protein
content and metabolic pathways between
different genomes, identification of interac-
ting proteins, assignment and prediction of
gene products, and large-scale analyses of
gene expression levels. Some of these re-
search topics will be demonstrated in our
example analysis of transcription regula-
tory systems.

Other subject areas we have included in
Table 1 are: development of digital libraries
for automated bibliographical searches,
knowledge bases of biological information
from the literature, DNA analysis methods
in forensics, prediction of nucleic acid struc-
tures, metabolic pathway simulations, and
linkage analysis – linking specific genes to
different disease traits.

In addition to finding relationships be-
tween different proteins, much of bioin-
formatics involves the analysis of one type
of data to infer and understand the obser-
vations for another type of data. An exam-
ple is the use of sequence and structural 
data to predict the secondary and tertiary
structures of new protein sequences [51].
These methods, especially the former, are
often based on statistical rules derived
from structures, such as the propensity for
certain amino acid sequences to produce
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different secondary structural elements.
Another example is the use of structural
data to understand a protein’s function;
here studies have investigated the rela-
tionship different protein folds and their
functions [52, 53] and analysed similarities
between different binding sites in the ab-
sence of homology [54]. Combined with 
similarity measurements, these studies pro-
vide us with an understanding of how much
biological information can be accurately

transferred between homologous proteins
[55].

4.1 The Bioinformatics Spectrum
Fig. 2 summarises the main points we 
raised in our discussions of organising 
and understanding biological data – the 
development of bioinformatics techniques
has allowed an expansion of biological 

analysis in two dimension, depth and
breadth. The first is represented by the 
vertical axis in the figure and outlines a
possible approach to the rational drug 
design process. The aim is to take a single
gene and follow through an analysis that
maximises our understanding of the 
protein it encodes. Starting with a gene 
sequence, we can determine the protein 
sequence with strong certainty. From there,
prediction algorithms can be used to calcu-

Paradigm shifts during the past couple of decades have taken much of biology away from the 
laboratory bench and have allowed the integration of other scientific disciplines, specifically 
computing. The result is an expansion of biological research in breadth and depth. The vertical axis
demonstrates how bioinformatics can aid rational drug design with minimal work in the wet lab. 
Starting with a single gene sequence, we can determine with strong certainty, the protein 
sequence. From there, we can determine the structure using structure prediction techniques. With
geometry calculations, we can further resolve the protein’s surface and through molecular 
simulation determine the force fields surrounding the molecule. Finally docking algorithms can 
provide predictions of the ligands that will bind on the protein surface, thus paving the way for the
design of a drug specific to that molecule. The horizontal axis shows how the influx of biological 
data and advances in computer technology have broadened the scope of biology. Initially with a pair
of proteins, we can make comparisons between the between sequences and structures of 
evolutionary related proteins. With more data, algorithms for multiple alignments of several 
proteins become necessary. Using multiple sequences, we can also create phylogenetic trees to 
trace the evolutionary development of the proteins in question. Finally, with the deluge of data we
currently face, we need to construct large databases to store, view and deconstruct the 
information. Alignments now become more complex, requiring sophisticated scoring schemes and
there is enough data to compile a genome census – a genomic equivalent of a population census –
providing comprehensive statistical accounting of protein features in genomes.

Fig. 2 Organizing and understanding biological data
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late the structure adopted by the protein.
Geometry calculations can define the 
shape of the protein’s surface and molecu-
lar simulations can determine the force
fields surrounding the molecule. Finally,
using docking algorithms, one could 
identify or design ligands that may bind 
the protein, paving the way for designing a
drug that specifically alters the protein’s
function. In practise, the intermediate steps
are still difficult to achieve accurately, and
they are best combined with experimental
methods to obtain some of the data, for 
example characterising the structure of the
protein of interest.

The aim of the second dimension, the
breadth in biological analysis, is to compare
a gene or gene product with others. Ini-
tially, simple algorithms can be used to
compare the sequences and structures of a
pair of related proteins. With a larger num-
ber of proteins, improved algorithms can be
used to produce multiple alignments, and
extract sequence patterns or structural
templates that define a family of proteins.
Using this data, it is also possible to con-
struct phylogenetic trees to trace the evolu-
tionary path of proteins. Finally, with even
more data, the information must be stored
in large-scale databases. Comparisons 
become more complex, requiring multiple
scoring schemes, and we are able to con-
duct genomic scale censuses that provide
comprehensive statistical accounts of 
protein features, such as the abundance of
particular structures or functions in diffe-
rent genomes. It also allows us to build 
phylogenetic trees that trace the evolution
of whole organisms.

5. “… applying INFORMATICS
TECHNIQUES…”
The distinct subject areas we mention 
require different types of informatics tech-
niques. Briefly, for data organisation, the
first biological databases were simple flat
files. However with the increasing amount
of information, relational database 
methods with Web-page interfaces have 
become increasingly popular. In sequence
analysis, techniques include string compari-

son methods such as text search and one-
dimensional alignment algorithms. Motif
and pattern identification for multiple 
sequences depend on machine learning,
clustering and data-mining techniques. 3D
structural analysis techniques include Eu-
clidean geometry calculations combined
with basic application of physical chemis-
try, graphical representations of surfaces
and volumes, and structural comparison
and 3D matching methods. For molecular
simulations, Newtonian mechanics, quan-
tum mechanics, molecular mechanics and
electrostatic calculations are applied. In
many of these areas, the computational 
methods must be combined with good 
statistical analyses in order to provide an
objective measure for the significance of
the results.

6. Transcription Regulation – 
a Case Study in Bioinformatics
DNA-binding proteins have a central role
in all aspects of genetic activity within an
organism, participating in processes such as
transcription, packaging, rearrangement,
replication and repair. In this section, we
focus on the studies that have contributed
to our understanding of transcription 
regulation in different organisms. Through
this example, we demonstrate how bio-
informatics has been used to increase our
knowledge of biological systems and also 
illustrate the practical applications of the
different subject areas that were briefly 
outlined earlier. We start by considering
structural analyses of how DNA-binding
proteins recognise particular base se-
quences. Later, we review several genomic
studies that have characterised the nature
of transcription factors in different orga-
nisms, and the methods that have been used
to identify regulatory binding sites in the
upstream regions. Finally, we provide an
overview of gene expression analyses that
have been recently conducted and suggest
future uses of transcription regulatory ana-
lyses to rationalise the observations made
in gene expression experiments. All the 
results that we describe have been found
through computational studies.

6.1 Structural Studies
As of April 2001, there were 379 structures
of protein-DNA complexes in the PDB.
Analyses of these structures have provided
valuable insight into the stereochemical
principles of binding, including how par-
ticular base sequences are recognized 
and how the DNA structure is quite often
modified on binding.

A structural taxonomy of DNA-binding
proteins, similar to that presented in SCOP
and CATH, was first proposed by Harrison
[56] and periodically updated to accom-
modate new structures as they are solved
[57]. The classification consists of a two-tier
system: the first level collects proteins into
eight groups that share gross structural 
features for DNA-binding, and the second
comprises 54 families of proteins that are
structurally homologous to each other.
Assembly of such a system simplifies the
comparison of different binding methods; it
highlights the diversity of protein-DNA
complex geometries found in nature, but 
also underlines the importance of inter-
actions between �-helices and the DNA
major groove, the main mode of binding in
over half the protein families. While the
number of structures represented in the
PDB does not necessarily reflect the rela-
tive importance of the different proteins in
the cell, it is clear that helix-turn-helix,
zinc-coordinating and leucine zipper motifs
are used repeatedly.These provide compact
frameworks to present the �-helix on the
surfaces of structurally diverse proteins. At
a gross level, it is possible to highlight the
differences between transcription factor
domains that “just” bind DNA and those
involved in catalysis [58]. Although there
are exceptions, the former typically 
approach the DNA from a single face and
slot into the grooves to interact with base
edges. The latter commonly envelope the
substrate, using complex networks of 
secondary structures and loops.

Focusing on proteins with �-helices, the
structures show many variations, both in
amino acid sequences and detailed geo-
metry. They have clearly evolved indepen-
dently in accordance with the requirements
of the context in which they are found.
While achieving a close fit between the 
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�-helix and major groove, there is enough
flexibility to allow both the protein and
DNA to adopt distinct conformations.
However, several studies that analysed the
binding geometries of �-helices demon-
strated that most adopt fairly uniform con-
formations regardless of protein family.
They are commonly inserted in the major
groove sideways, with their lengthwise axis
roughly parallel to the slope outlined by 
the DNA backbone. Most start with the 
N-terminus in the groove and extend out,
completing two to three turns within
contacting distance of the nucleic acid [59,
60].

Given the similar binding orientations, it
is surprising to find that the interactions
between each amino acid position along
the �-helices and nucleotides on the DNA
vary considerably between different pro-
tein families. However, by classifying the
amino acids according to the sizes of their
side chains, we are able to rationalise the
different interactions patterns. The rules of
interactions are based on the simple pre-
mise that for a given residue position on 
�-helices in similar conformations, small
amino acids interact with nucleotides that
are close in distance and large amino acids
with those that are further [60, 61]. Equi-va-
lent studies for binding by other structural
motifs, like �-hairpins, have also been con-
ducted [62]. When considering these 
interactions, it is important to remember
that different regions of the protein surface
also provide interfaces with the DNA.

This brings us to look at the atomic level
interactions between individual amino
acid-base pairs. Such analyses are based on
the premise that a significant proportion of
specific DNA-binding could be rationalised
by a universal code of recognition between
amino acids and bases, ie whether certain
protein residues preferably interact with
particular nucleotides regardless of the 
type of protein-DNA complex [63]. Studies
have considered hydrogen bonds, van der
Waals contacts and water-mediated bonds
[64-66]. Results showed that about 2/3 of all
interactions are with the DNA back-
bone and that their main role is one of 
sequence-independent stabilisation. In 
contrast, interactions with bases display 
some strong preferences, including the 

interactions of arginine or lysine with 
guanine, asparagine or glutamine with
adenine and threonine with thymine. Such
preferences were explained through exami-
nation of the stereochemistry of the amino
acid side chains and base edges. Also 
highlighted were more complex types of 
interactions where single amino acids
contact more than one base-step simulta-
neously, thus recognising a short DNA 
sequence. These results suggested that 
universal specificity, one that is observed
across all protein-DNA complexes, indeed
exists. However, many interactions that are
normally considered to be non-specific,
such as those with the DNA backbone, can
also provide specificity depending on the
context in which they are made.

Armed with an understanding of 
protein structure, DNA-binding motifs and
side chain stereochemistry, a major applica-
tion has been the prediction of binding 
either by proteins known to contain a parti-
cular motif, or those with structures solved
in the uncomplexed form. Most common
are predictions for �-helix-major groove 
interactions – given the amino acid se-
quence, what DNA sequence would it 
recognise [61, 67]. In a different approach,
molecular simulation techniques have been
used to dock whole proteins and DNAs on
the basis of force-field calculations around
the two molecules [68, 69].

The reason that both methods have 
been met with limited success is because
even for apparently simple cases like �-
helix-binding, there are many other factors
that must be considered. Comparisons 
between bound and unbound nucleic acid
structures show that DNA-bending is a
common feature of complexes formed with
transcription factors [58, 70].This and other
factors such as electrostatic and cation-
mediated interactions assist indirect 
recognition of the nucleotide sequence,
although they are not well understood yet.
Therefore, it is now clear that detailed rules
for specific DNA-binding will be family
specific, but with underlying trends such as
the arginine-guanine interactions.

6.2 Genomic Studies
Due to the wealth of biochemical data that
are available, genomic studies in bioin-
formatics have concentrated on model 
organisms, and the analysis of regulatory
systems has been no exception. Identification
of transcription factors in genomes invari-
ably depends on similarity search strate-
gies, which assume a functional and evolu-
tionary relationship between homologous
proteins. In E. coli, studies have so far 
estimated a total of 300 to 500 transcription
regulators [71] and PEDANT [72], a data-
base of automatically assigned gene funct-
ions, shows that typically 2-3% of pro-
karyotic and 6-7% of eukaryotic genomes
comprise DNA-binding proteins.As assign-
ments were only complete for 40-60% of
genomes as of August 2000, these figures
most likely underestimate the actual num-
ber. Nonetheless, they already represent a
large quantity of proteins and it is clear that
there are more transcription regulators 
in eukaryotes than other species. This is 
unsurprising, considering the organisms 
have developed a relatively sophisticated
transcription mechanism.

From the conclusions of the structural
studies, the best strategy for characterising
DNA-binding of the putative transcription
factors in each genome is to group them 
by homology and to analyse the individual 
families. Such classifications are provided
in the secondary sequence databases 
described earlier and also those that 
specialise in regulatory proteins such as
RegulonDB [73] and TRANSFAC [74].
Of even greater use is the provision of
structural assignments to the proteins;
given a transcription factor, it is helpful to
know the structural motif that it uses for
binding, therefore providing us with a 
better understanding of how it recognises
the target sequence. Structural genomics
through bioinformatics assigns structures
to the protein products of genomes by 
demonstrating similarity to proteins of
known structure [75]. These studies have
shown that prokaryotic transcription fac-
tors most frequently contain helix-turn-
helix motifs [71, 76] and eukaryotic factors
contain homeodomain type helix-turn-
helix, zinc finger or leucine zipper motifs.
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From the protein classifications in each 
genome, it is clear that different types of 
regulatory proteins differ in abundance and
families significantly differ in size. A study
by Huynen and van Nimwegen [77] has
shown that members of a single family have
similar functions, but as the requirements
of this function vary over time, so does 
the presence of each gene family in the 
genome.

Most recently, using a combination of
sequence and structural data, we examined
the conservation of amino acid sequences
between related DNA-binding proteins,
and the effect that mutations have on 
DNA sequence recognition. The structural
families described above were expanded to
include proteins that are related by sequence
similarity, but whose structures remain 
unsolved. Again, members of the same 
family are homologous, and probably derive
from a common ancestor.

Amino acid conservations were calculat-
ed for the multiple sequence alignments 
of each family [78]. Generally, alignment
positions that interact with the DNA are
better conserved than the rest of the pro-
tein surface, although the detailed patterns
of conservation are quite complex. Residues
that contact the DNA backbone are highly
conserved in all protein families, providing
a set of stabilising interactions that are
common to all homologous proteins. The
conservation of alignment positions that
contact bases, and recognise the DNA 
sequence, are more complex and could be
rationalised by defining a three-class model
for DNA-binding. First, protein families
that bind non-specifically usually contain 
several conserved base-contacting residues;
without exception, interactions are made in
the minor groove where there is little 
discrimination between base types. The
contacts are commonly used to stabilise 
deformations in the nucleic acid structure,
particularly in widening the DNA minor
groove. The second class comprise families
whose members all target the same
nucleotide sequence; here, base-contacting
positions are absolutely or highly conser-
ved allowing related proteins to target the
same sequence.

The third, and most interesting, class
comprises families in which binding is also

specific but different members bind distinct
base sequences. Here protein residues 
undergo frequent mutations, and family
members can be divided into subfamilies
according to the amino acid sequences 
at base-contacting positions; those in the
same subfamily are predicted to bind the
same DNA sequence and those of different
subfamilies to bind distinct sequences. On
the whole, the subfamilies corresponded
well with the proteins’ functions and mem-
bers of the same subfamilies were found to
regulate similar transcription pathways.
The combined analysis of sequence and
structural data described by this study pro-
vided an insight into how homologous
DNA-binding scaffolds achieve different
specificities by altering their amino acid 
sequences. In doing so, proteins evolved 
distinct functions, therefore allowing 
structurally related transcription factors to
regulate expression of different genes.
Therefore, the relative abundance of tran-
scription regulatory families in a genome
depends, not only on the importance of a
particular protein function, but also in the
adaptability of the DNA-binding motifs to
recognise distinct nucleotide sequences.
This, in turn, appears to be best accommo-
dated by simple binding motifs, such as the
zinc fingers.

Given the knowledge of the transcription
regulators that are contained in each 
organism, and an understanding of how
they recognise DNA sequences, it is of 
interest to search for their potential bind-
ing sites within genome sequences [79].
For prokaryotes, most analyses have in-
volved compiling data on experimentally
known binding sites for particular proteins
and building a consensus sequence that in-
corporates any variations in nucleotides.
Additional sites are found by conducting
word-matching searches over the entire 
genome and scoring candidate sites by 
similarity [80-83]. Unsurprisingly, most of
the predicted sites are found in non-coding
regions of the DNA [80] and the results of
the studies are often presented in databases
such as RegulonDB [73]. The consensus 
search approach is often complemented by
comparative genomic studies searching 
upstream regions of orthologous genes in
closely related organisms. Through such an

approach, it was found that at least 27% of
known E. coli DNA-regulatory motifs are
conserved in one or more distantly related
bacteria [84].

The detection of regulatory sites in 
eukaryotes poses a more difficult problem
because consensus sequences tend to be
much shorter, variable, and dispersed over
very large distances. However, initial stud-
ies in S. cerevisiae provided an interesting
observation for the GATA protein in nitro-
gen metabolism regulation. While the 5 
base-pair GATA consensus sequence is 
found almost everywhere in the genome, a
single isolated binding site is insufficient to
exert the regulatory function [85]. There-
fore specificity of GATA activity comes
from the repetition of the consensus se-
quence within the upstream regions of con-
trolled genes in multiple copies. An initial
study has used this observation to predict
new regulatory sites by searching for over-
represented oligonucleotides in non-coding
regions of yeast and worm genomes [86,
87].

Having detected the regulatory binding
sites, there is the problem of defining the
genes that are actually regulated, commonly
termed regulons. Generally, binding sites
are assumed to be located directly upstream
of the regulons; however there are different
problems associated with this assumption
depending on the organism. For prokary-
otes, it is complicated by the presence of
operons; it is difficult to locate the regulat-
ed gene within an operon since it can lie 
several genes downstream of the regulatory
sequence. It is often difficult to predict the
organisation of operons [88], especially to
define the gene that is found at the head,
and there is often a lack of long-range con-
servation in gene order between related 
organisms [89]. The problem in eukaryotes
is even more severe; regulatory sites often
act in both directions, binding sites are
usually distant from regulons because of
large intergenic regions, and transcription
regulation is usually a result of combined
action by multiple transcription factors in a
combinatorial manner.

Despite these problems, these studies
have succeeded in confirming the transcrip-
tion regulatory pathways of well-character-
ized systems such as the heat shock response
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system [83]. In addition, it is feasible to 
experimentally verify any predictions, most
notably using gene expression data.

6.3 Gene Expression Studies
Many expression studies have so far 
focused on devising methods to cluster 
genes by similarities in expression profiles.
This is in order to determine the proteins
that are expressed together under different
cellular conditions. Briefly, the most com-
mon methods are hierarchical clustering,
self-organising maps, and K-means cluster-
ing. Hierarchical methods originally de-
rived from algorithms to construct phyloge-
netic trees, and group genes in a “bottom-
up” fashion; genes with the most similar 
expression profiles are clustered first, and
those with more diverse profiles are 
included iteratively [90-92]. In contrast, the
self-organising map [93, 94] and K-means
methods [95, 96] employ a “top-down”
approach in which the user pre-defines the
number of clusters for the dataset. The 
clusters are initially assigned randomly, and
the genes are regrouped iteratively until
they are optimally clustered.

Given these methods, it is of interest to
relate the expression data to other attri-
butes such as structure, function and sub-
cellular localisation of each gene product.
Mapping these properties provides an 
insight into the characteristics of proteins
that are expressed together, and also sug-
gest some interesting conclusions about the
overall biochemistry of the cell. In yeast,
shorter proteins tend to be more highly 
expressed than longer proteins, probably
because of the relative ease with which they
are produced [97]. Looking at the amino
acid content, highly expressed genes are 
generally enriched in alanine and glycine,
and depleted in asparagine; these are
thought to reflect the requirements of 
amino acid usage in the organism, where
synthesis of alanine and glycine are energe-
tically less expensive than asparagine.Turn-
ing to protein structure, expression levels of
the TIM barrel and NTP hydrolase folds
are highest, while those for the leucine 
zipper, zinc finger and transmembrane
helix-containing folds are lowest. This 

relates to the functions associated with 
these folds; the former are commonly in-
volved in metabolic pathways and the latter
in signalling or transport processes [98].
This is also reflected in the relationship
with subcellular localisations of proteins,
where expression of cytoplasmic proteins is
high, but nuclear and membrane proteins
tend to be low [99, 100].

More complex relationships have also
been assessed. Conventional wisdom is that
gene products that interact with each other
are more likely to have similar expression
profiles than if they do not [101, 102]. How-
ever, a recent study showed that this rela-
tionship is not so simple [103]. While ex-
pression profiles are similar for gene pro-
ducts that are permanently associated, for
example in the large ribosomal subunit,
profiles differ significantly for products
that are only associated transiently, includ-
ing those belonging to the same metabolic
pathway.

As described below, one of the main 
driving forces behind expression analysis
has been to analyse cancerous cell lines
[104]. In general, it has been shown that dif-
ferent cell lines (eg epithelial and ovarian
cells) can be distinguished on the basis of
their expression profiles, and that these
profiles are maintained when cells are
transferred from an in vivo to an in vitro 
environment [105]. The basis for their phy-
siological differences were apparent in the
expression of specific genes; for example,
expression levels of gene products neces-
sary for progression through the cell cycle,
especially ribosomal genes, correlated well
with variations in cell proliferation rate.
Comparative analysis can be extended to
tumour cells, in which the underlying 
causes of cancer can be uncovered by 
pinpointing areas of biological variations
compared to normal cells. For example in
breast cancer, genes related to cell prolif-
eration and the IFN-regulated signal trans-
duction pathway were found to be upregu-
lated [25, 106]. One of the difficulties in
cancer treatment has been to target specific
therapies to pathogenetically distinct tu-
mour types, in order to maximise efficacy
and minimise toxicity. Thus, improvements
in cancer classifications have been central
to advances in cancer treatment. Although

the distinction between different forms of
cancer – for example subclasses of acute
leukaemia – has been well established, it is
still not possible to establish a clinical diag-
nosis on the basis of a single test. In a 
recent study, acute myeloid leukaemia and
acute lymphoblastic leukaemia were suc-
cessfully distinguished based on the ex-
pression profiles of these cells [26]. As the
approach does not require prior biological
knowledge of the diseases, it may provide a
generic strategy for classifying all types of
cancer.

Clearly, an essential aspect of under-
standing expression data lies in understand-
ing the basis of transcription regulation.
However, analysis in this area is still limited
to preliminary analyses of expression levels
in yeast mutants lacking key components of
the transcription initiation complex [19,
107].

7 “… many PRACTICAL 
APPLICATIONS…”
Here, we describe some of the major uses
of bioinformatics.

7.1 Finding Homologues
As described earlier, one of the driving 
forces behind bioinformatics is the search
for similarities between different biomole-
cules.Apart from enabling systematic orga-
nisation of data, identification of protein
homologues has some direct practical uses.
The most obvious is transferring informa-
tion between related proteins. For example,
given a poorly characterised protein, it is
possible to search for homologues that are
better understood and with caution, apply
some of the knowledge of the latter to the
former. Specifically with structural data,
theoretical models of proteins are usually
based on experimentally solved structures
of close homologues [108]. Similar tech-
niques are used in fold recognition in which
tertiary structure predictions depend on
finding structures of remote homologues
and checking whether the prediction is
energetically viable [109]. Where biochem-
ical or structural data are lacking, studies
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could be made in low-level organisms like
yeast and the results applied to homo-
logues in higher-level organisms such as 
humans, where experiments are more 
demanding.

An equivalent approach is also employed
in genomics. Homologue-finding is exten-
sively used to confirm coding regions in 
newly sequenced genomes and functional
data is frequently transferred to annotate
individual genes. On a larger scale, it also

simplifies the problem of understanding
complex genomes by analysing simple 
organisms first and then applying the 
same principles to more complicated ones –
this is one reason why early structural 
genomics projects focused on Mycoplasma
genitalium [75].

Ironically, the same idea can be applied
in reverse. Potential drug targets are quickly
discovered by checking whether homo-
logues of essential microbial proteins are

missing in humans. On a smaller scale,
structural differences between similar pro-
teins may be harnessed to design drug
molecules that specifically bind to one
structure but not another.

7.2 Rational Drug Design
One of the earliest medical applications of
bioinformatics has been in aiding rational

Fig. 3 Above is a schematic outlining how scientists can use bioinformatics to aid rational drug discovery. MLH1 is a human gene encoding a mismatch repair protein (mmr) situated on the
short arm of chromosome 3. Through linkage analysis and its similarity to mmr genes in mice, the gene has been implicated in nonpolyposis colorectal cancer. Given the nucleotide sequence,
the probable amino acid sequence of the encoded protein can be determined using translation software. Sequence search techniques can be used to find homologues in model organisms, and
based on sequence similarity, it is possible to model the structure of the human protein on experimentally characterised structures. Finally, docking algorithms could design molecules that
could bind the model structure, leading the way for biochemical assays to test their biological activity on the actual protein.
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drug design. Fig. 3 outlines the commonly
cited approach, taking the MLH1 gene pro-
duct as an example drug target. MLH1 is a
human gene encoding a mismatch repair
protein (mmr) situated on the short arm of
chromosome 3 [110]. Through linkage ana-
lysis and its similarity to mmr genes in mice,
the gene has been implicated in nonpoly-
posis colorectal cancer [111]. Given the
nucleotide sequence, the probable amino
acid sequence of the encoded protein can
be determined using translation software.
Sequence search techniques can then be
used to find homologues in model orga-
nisms, and based on sequence similarity, it
is possible to model the structure of the 
human protein on experimentally character-
ized structures. Finally, docking algorithms
could design molecules that could bind the
model structure, leading the way for bio-
chemical assays to test their biological 
activity on the actual protein.

7.3 Large-scale Censuses
Although databases can efficiently store all
the information related to genomes, struc-
tures and expression datasets, it is useful to
condense all this information into under-
standable trends and facts that users can
readily understand. Broad generalisations
help identify interesting subject areas for
further detailed analysis, and place new ob-
servations in a proper context. This enables
one to see whether they are unusual in any
way.

Through these large-scale censuses, one
can address a number of evolutionary, bio-
chemical and biophysical questions. For 
example, are specific protein folds associat-
ed with certain phylogenetic groups? How
common are different folds within partic-
ular organisms? And to what degree are
folds shared between related organisms?
Does this extent of sharing parallel meas-
ures of relatedness derived from traditional
evolutionary trees? Initial studies show
that the frequency of folds differs greatly
between organisms and that the sharing of
folds between organisms does in fact follow
traditional phylogenetic classifications 
[37, 112, 113]. We can also integrate data on
protein functions; given that the particular

protein folds are often related to specific
biochemical functions [52, 53], these find-
ings highlight the diversity of metabolic 
pathways in different organisms [36, 89].

As we discussed earlier, one of the most
exciting new sources of genomic information
is the expression data. Combining expression
information with structural and functional
classifications of proteins we can ask
whether the high occurrence of a protein
fold in a genome is indicative of high ex-
pression levels [97]. Further genomic scale
data that we can consider in large-scale sur-
veys include the subcellular localisations of
proteins and their interactions with each
other [114-116]. In conjunction with struc-
tural data, we can then begin to compile a
map of all protein-protein interactions in
an organism.

8. Conclusions
With the current deluge of data, compu-
tational methods have become indispens-
able to biological investigations. Originally
developed for the analysis of biological se-
quences, bioinformatics now encompasses
a wide range of subject areas including
structural biology, genomics and gene ex-
pression studies. In this review, we provided
an introduction and overview of the cur-
rent state of field. In particular, we discus-
sed the types of biological information and
databases that are commonly used, exa-
mined some of the studies that are being con-
ducted – with reference to transcription 
regulatory systems – and finally looked at
several practical applications of the field.
Two principal approaches underpin all stud-
ies in bioinformatics. First is that of com-
paring and grouping the data according to
biologically meaningful similarities and sec-
ond, that of analysing one type of data to
infer and understand the observations for
another type of data. These approaches are
reflected in the main aims of the field,
which are to understand and organise the
information associated with biological
molecules on a large scale. As a result,
bioinformatics has not only provided great-
er depth to biological investigations, but 
added the dimension of breadth as well. In

this way, we are able to examine individual
systems in detail and also compare them
with those that are related in order to un-
cover common principles that apply across
many systems and highlight unusual fea-
tures that are unique to some.
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