

Phylogeny: Inference Tool

- Phylogeny is the inference of evolutionary relationships.
- Traditionally, phylogeny relied on the comparison of morphological features between organisms.
- Today, molecular sequence data are also used for phylogenetic analyses.

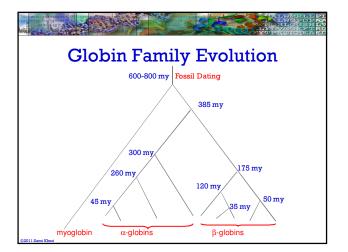
Importance of Phylogeny

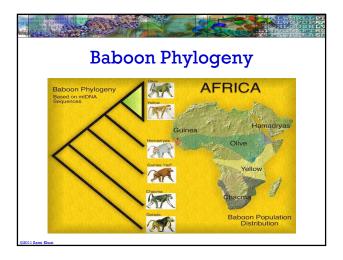
- How many genes are related to my favorite gene?
- Was the extinct quagga more like a zebra or a horse?
- Was Darwin correct when he stated that humans are the closest to chimps and gorillas?
- How related are whales and dolphins to cows?
- Where and when did HIV originate?
- What is the history of life on earth?

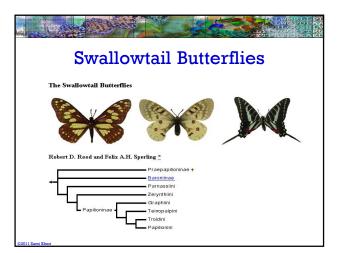
Phylogenetic Analysis

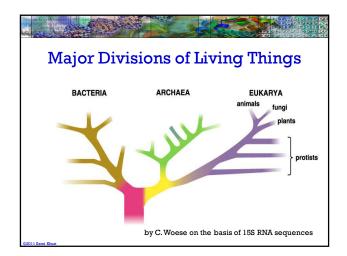
- A phylogenetic analysis of a family of related nucleic acid or protein sequences is a determination of how the family might have been derived during evolution.
- Two sequences that are very much alike will be located as neighboring outside branches (leaves) and will be joined by a common branch beneath them.

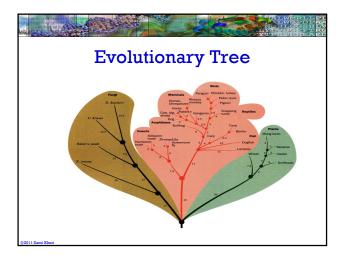
Aim of Phylogenetic Analysis

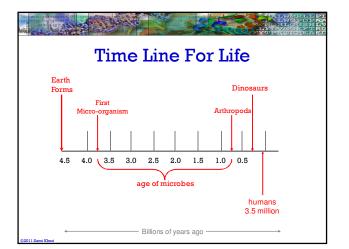

- The evolutionary relationships among the sequences are depicted by placing the sequences as outer branches on a tree.
- The branching relationships on the inner part of the tree then reflect the degree to which different sequences are related.
- The aim of phylogenetic analysis is to discover all of the branching relationships in the tree and the branch lengths.

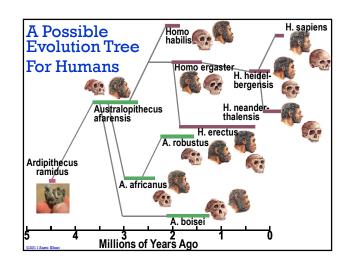

Phylogenetic Trees • Phylogenetic tree: diagram showing evolutionary paths of species/genes. • Why do we construct phylogenetic trees? • To understand the path (lineage) of various species. • To understand how various functions evolved.

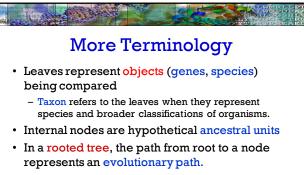

- To perform multiple alignment.




- To study the evolutionary relationships of different species and to understand how species relate to one another.
- To predict the unknown gene's function according to its phylogenetic relationship to other genes.

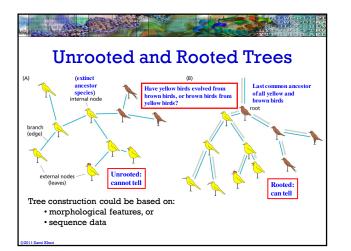


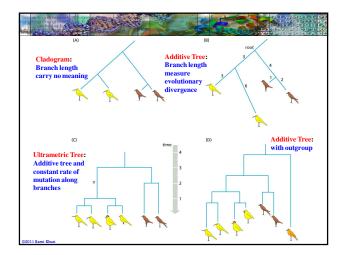


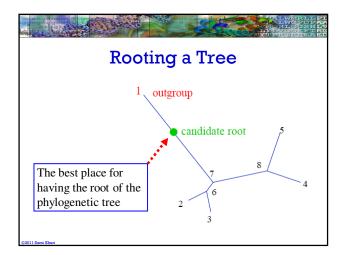


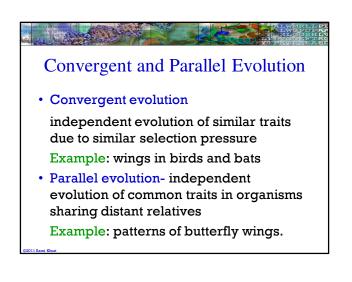
Advantages of Molecular Traits

- They directly reflect the underlying process of evolution- changes in the hereditary material
- There are a vast number of potential traits
- They can detect differences between very closely related organisms (even those that show no phenotypic difference)
- They are not affected by the environment (unlike some morphological traits)
- Since mutations generally occur as random events with specific probabilities, the number of mutations can be used to calibrate evolutionary time (molecular clocks)

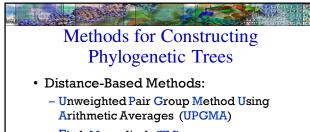





• An unrooted tree specifies relationships among objects, but not evolutionary paths.


Rooted and Unrooted Trees

- All objects in a rooted tree have a single common ancestor.
 - In general, rooted trees require more information to construct than unrooted ones.
- Objects are leaves in an unrooted tree and internal nodes are common ancestors.
 - In general, given any two leaves, we cannot tell if they have a common ancestor.

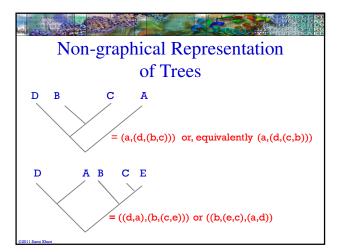

Building of a Phylogenetic Tree

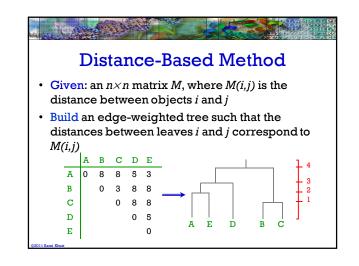
- Sequence Selection:
 - Identify a DNA or protein sequence.
 - Obtain related sequences by performing a database search.
- Perform multiple alignment.
- Build a phylogenetic tree.
- · Check the robustness of the tree.

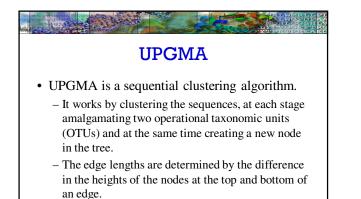
The construction of the tree is:

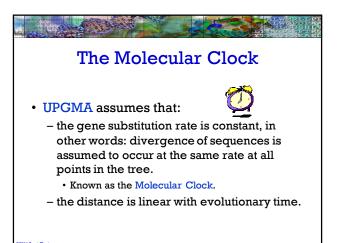
- distance-based: measures the distance between species/genes (eg. mutations, time, distance metric).
 - First calculate the overall distance between all pairs of sequences, then construct a tree based on the distances.
- · character-based: morphological features (eg. number of legs), DNA/protein sequences.
 - Use the individual substitutions among sequences to determine the most likely ancestral relationships.
 - The tree is constructed based on the gain or loss of traits.

- -Fitch Margoliash (FM)
- Neighbor Joining (NJ)
- Character-Based Methods:
 - Maximum Parsimony (MP)
 - Maximum Likelihood (ML)

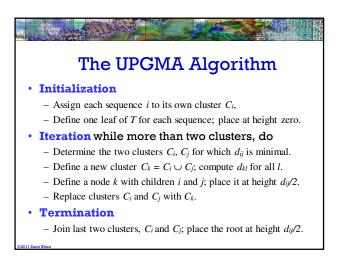

- Use distance data.
- Produce a single tree.
- Do not use objective functions to compare the current tree to other trees.
- trees.
- First define an optimality criterion, i.e. minimum branch length, and then find the tree with the best value for the objective function.

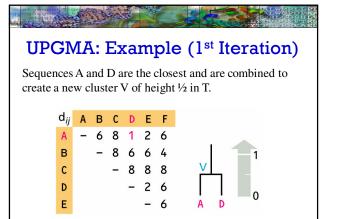

Maximum Likelihood


Clustering Algorithms


- The strength of clusterting algorithms is:
 - Their speed
 - Their robustenss
 - Their ability to reconstruct trees for very large numbers (thousands) of sequences.
 - Most clustering methods reconstruct phylogenetic trees for a set of sequences on the basis of their pairwise evolutionary distances.

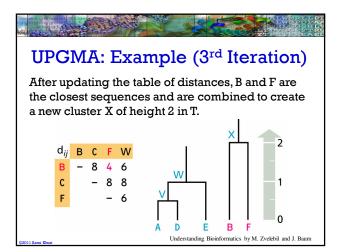
Classification of Tree Building Methods Tree Building Methods Clustering Algorithm Optimality Criterion UPGMA of Data Distance-Fitch-Margoliash Neighbor Joining Based ype Character Maximum Parsimony Based

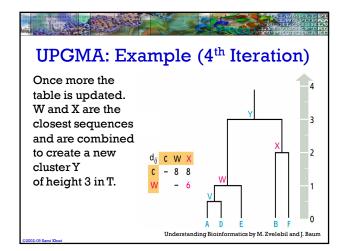

Rates of Evolutionary Change

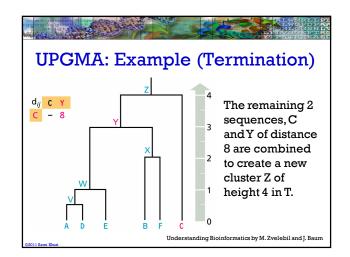

- Different rates throughout genomic DNA base-pair sequence, based mainly on coding.
- ORFs: codon position 3 changes faster than positions 1 and 2.
- Introns change faster than exons.
- Intergenic DNA (especially repeats) changes faster than intragenic (ORF) DNA.
- DNA overall: transition mutations more frequent than transversion mutations.

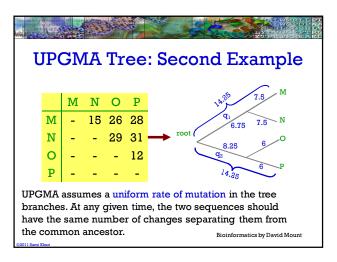
UPGMA Algorithm

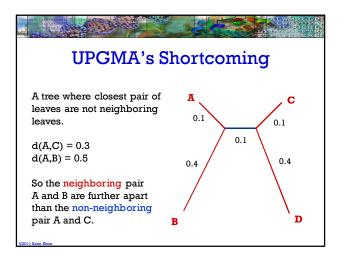
- The algorithm iteratively picks two clusters and merges them, thus creating a new node in the tree.
- The average distance between two clusters is determined by:


$$d_{ij} = \frac{1}{|C_i||C_j|} \sum_{p \in C_i, q \in C_j} d_{pq}, \text{ where } C_i \text{ and } C_j \text{ are clusters.}$$






Understanding Bioinformatics by M. Zvelebil and J. Baum


UPGMA: Example (2nd Iteration) The table of distances is updated to reflect the average distances from V to the other sequences. V and E are the closest and are combined to create a new cluster W of height 1 in T. d_{ii} BCEFV - 8 6 4 6 R С - 8 8 8 Е - 6 2 F - 6 0 D E Understanding Bioinformatics by M. Zvelebil and J. Baum

Fitch-Margoliash Method

- Fitch-Margoliash does not assume a constant mutation rate.
- With the Fitch-Margoliash Method, the sequences are combined in threes to define the branches of the predicted tree and to calculate the branch lengths of the tree.
- This method of averaging distances is most accurate for trees with short branches.

Introduction to Neighbor-Joining

- Neighbor Joining does not assume a constant rate of evolution.
- The algorithm is based on the concept of minimum evolution; the true tree is the one for which the total branch length is minimum.
- The resulting tree is not rooted and is additive.

Limitations of Distance-Based Phylogenetic Trees

The distance-based phylogenetic tree is derived from the pairwise distance of aligned sequences and not from the original sequence data. The distance information may not contain all the sequence information.

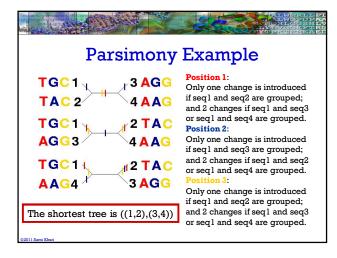
Observable Features

- Sometimes we do not have a distance metric between the species we are interested in.
- What we have instead, are observable features.
- We then use the observable features to build the tree. These trees are called Character-Based trees.

Character-Based Trees

- The building of the tree is based on morphological features and not on distances.
- Examples of morphological features:
 has feathers
 - has a backbone
 - has a certain amino acid at a certain position in the sequence
 - whether or not a certain protein regulates another protein.

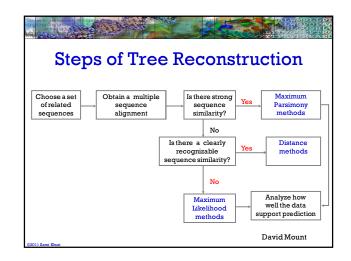
Maximum Parsimony Method

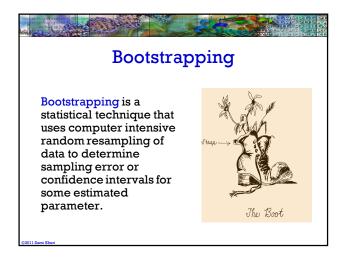

- The maximum parsimony method predicts the evolutionary tree that minimizes the number of steps required to generate the observed variation in the sequences
 - This method is also known as the minimum evolution method.
- The maximum parsimony method is used
 - for sequences that are quite similar, and
 for small number of sequences.

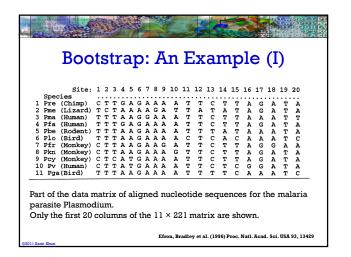
Maximum Parsimony

- Maximum parsimony means fewest evolutionary changes necessary to explain observed taxonomic relationships.
- Fewest postulated steps in evolutionary process.
- Leads to predictions for common ancestor and branch-point ancestors.
- Exhaustive search of trees is possible only for small number of species.

Parsimony: An Example


- Given four sequences:
 - Sequence 1: TGC
 - Sequence 2: TAC
 - Sequence 3: AGG
 - Sequence 4: AAG
- We want to find the tree with the smallest number of changes that explains the observed data.
- Draw all possible trees with 4 taxa.




Informative Sites

- A site that provides information for distinguishing between different topologies is said to be an **informative site**.
- Only **informative sites** need to be analyzed.
- A site is phylogenetically informative only when there are at least two different kinds of characters, each represented at least two times.

Infc	orm	ati	ve	Site	es:	An	Ex	an	nple
Taxa	1	2	3	4	5	6	Z	8	9
1	A	A	G	A	G	Т	G	С	A
2	A	G	С	С	G	т	G	С	G
3	A	G	A	Т	A	т	С	С	A
4	A	G	A	G	A	Т	С	С	G
O: ni Khuri	nly sit	tes at	colur	nns 5	, 7, an	d 9 ai	re info	ormat	ives s

	Software Tools					
•	PHYLIP					
	 Phylogeny Inference Package. 					
	 <u>http://evolution.genetics.washington.edu/phylip.html</u> 					
	- Free.					
	 Developed by Dr. Joe Felsenstein from the Department of 					
	Genome Sciences at the University of Washington. – Source code is written in ANSI C.					
	 Source code is written in ANSI C. Executables are available for different platforms: 					
	 Windows, UNIX and Macintosh. 					
	PAUP*					
	 Phylogenetic Analysis Using Parsimony. 					
	 http://www.lms.si.edu/PAUP/about.html 					
	 Developed by Dr. David Swofford of the Laboratory of 					
	Molecular Systematics, National Museum of Natural History					
	 The most sophisticated parsimony program. 					