

			2.0		4.0		6.0		9.0	
ombat		AAAGTTAATGAGTG	20 GTTATCCAGA	AGTAGTGACA	TTTTAGCCTC'	GATAACTCC	aaccostacca	GCCATGAGCAG	accoraca	83
possum	-	AAAGTTAATGAGTG	GTTATTCAGA	AGTAATGACG	TTTTAGCCCC	GATTACTCA	AGTGTTAGGA	GCCATGAACAG	AATGCAGA	: 83
rmadillo	÷	AAAGTTAACGAGTG	GTTTTCCAGA	GGTGATGACA	TATTAACTIC	GATGACTCA	CACGATAGGG	GGTCTGAATTA	AATGCAGA	83
loth	:	AAAGTTAATGAGTG	GTTTTCCAGA	AGTGATGACA	TACTAACTTC:	IGATGACTCA	CACAATGGGG	GGTCTGAATCA	AATGCAGA	83
ugong	:	AAAGTTAATGAGTG	GTTTTTCAGA	AGTGATGGCC	TG	GATGACTIG	CATGATAAGG	GGTCTGAGTCJ	AATGCAGA	: 74
yrax	:	AAAGTTAATGAGTG	GTTTTCCAGA	AGTGACAACC	та	AGTGATTCA	CCTAGTGAGG	GGTCTGAATTA	IA ATGGAAA	74
ardvark	:	AAAGTTAATGAGTG	GTTTTCCAGA	AGTGATGGCC	TG	-GATGGCTCA	CATGATGAAG	GGTCTGAATCA	LAATGCAGA	: 74
enrec	:	AAGGTTAACGAGTG	GTTTTCCAAA	AGCC ACGGCC	TG	-GGTGACTCT	CGCGATGGGC	GGCCTGAGTC	IG GCGCAGA	: 74
hinoceros	:	AAAGTTAATGAGTG	GTTTTCCAGA	AGTGATGAAA	TATTAACTIC	IGATGACTCA	CATGATGGGG	GGCCTGAATC	LAATACTGA	: 83
ig	:	AAAGTTAATGAGTG	GTTTTCTAGA	AGCGATGAAA	TGTTAACTTC:	FGACGACTCA	CAGGACAGGA	GGTCTGAATC	LAATACTGG	: 83
eagenog	÷.	AAAG TGAATGAATG	GUTTTCCAGA	AGTGATGAAC	TGTTAACTIC.	IGATGACICA CATGACICA	TATGATAAGG	GATCTAAATCA	AAAACTGA	: 83
uman	1	AAAGTIAAIGAGIG	GITTICCAGA	AGIGAIGARC	TOTINGGITC.	CARGACICA	CAIGAIGGGG	COOCTORNICS	A ATCOLOR	. 03
at	1	AAAGIGAAIGAGIG	GITTCCAGA	ACTOBICAR	TOTTANCTIC.	CATCACTCA	CTERCREGA	COTOTOTOANTO	ANTOCASA	. 0.3
			100	•	120	•	140			
ombat	:	GGTGCCTAGTGCCI	TAGAAGATGG	GCAT CCAGAT.	ACCGCAGAGGG	SAAATTCTAG	CGTTTCTGAG	AAGACTGAC :	156	
possum	:	GGCAACCAATGCTI	TAGAATATGG	GCAT GTAGAG.	ACAGATG	GAAATTCTAG	CATTTCTGAA	AAGACTGAT :	153	
rmadillo	:	AGTAGCTGGTGCAT	TGAAAGTT	TCAAAA	GAAGTAGATG	AATATTCTAG	TTTTTCAGAG	AAGATAGAC :	150	
loth	•	AGTAGTIGGIGCAI	TGAAAGTI	CCAAAT	GAAGTAGATG	SATATICIGG	TTCTTCAGAG	AAGATAGAC :	150	
ugong	÷.	AGTAGETGGTGETT	TAGAAGTI	CCAGAA	GAAGTACATG	ATATICIAG	TTETTCAGAG	AAAATAGAC :	141	
yrax	1	ANTACCTOCTCCAT	TACAACII	TCADAT	CARGINCAIN	TTACTOTO	TTCTTCAGAG	AACAIAGAI :	141	
onroc	1	CGTAGCTGTAGCCT	TCGAAGTT	CCAGAC	GAAGCATGTG	ATCTTATAG	TTCTCCAGAG	aaaacagac :	141	
hinoceros	1	AGTAGCTGGTGCAG	TAGAAGTT	CAAAAT	GAAGTAGATG	ATATTCTGG	TTCTTCAGAG	AAAATAGGC	150	
ig	:	GGTAGCTGGTGCAG	CAGAGGTT	CCAAAT	GAAGCAGATG	ACATTIGGG	TTCTTCAGAG	AAAATAGAC :	150	
edgehog	:	agtaactgtaacaa	CAGAAGTT	CCAAAT	GCAATAGATAG	RTTTTTGG	TTCTTCAGAG	ААААТАААС :	150	
uman	:	AGTAGCTGATGTAT	TGGACGTT	CTAAAT	GAGGTAGATGJ	AATATTCTGG	TTCTTCAGAG	AAAATAGAC :	150	
		AGCTGCTGTTGTGT	TAGAAGTT	TCAAAT	GAAGTGGATG	SATGTTTCAG	TTCTTCAAAG	AAAATAGAC :	150	
at										

Aligning BRCA1 Sequences (II)									
_									
	* * * * *								
Wombat	: KVNEWLSRSSDILASDNSNGRSHEQSAEVPSALEDGHPDTAEGNSSVSEKTD : 52								
Opossum	: KVNEWLFRSNDVLAPDYSSVRSHEQNAEATNALEYGHVET-DGNSSISEKTD : 51								
Armadillo	: KVNEWFSRGDDILTSDDSHDRGSELNAEVAGALKVSKEVDEYSSFSEKID : 50								
Sloth	: KVNEWFSRSDDILTSDDSHNGGSESNAEVVGALKVPNEVDGYSGSSEKID : 50								
Dugong	: KVNEWFFRSDGLDDLHDKGSESNAEVAGALEVPEEVHGYSSSSEKID : 47								
Hyrax	: KVNEWFSRSDNLSDSPSEGSELNGKVAGPVKLPGEVHRYSSFPENID : 47								
Aardvark	: KVNEWFSRSDGLDGSHDEGSESNAEIGGALEVSNEVHSYSGSSEKID : 47								
Tenrec	: KVNEWFSKSHGLGDSRDGRPESGADVAVAFEVPDEACESYSSPEKTD : 47								
Rhinoceros	: KVNEWFSRSDEILTSDDSHDGGPESNTEVAGAVEVQNEVDGYSGSSEKIG : 50								
Pig	: KVNEWFSRSDEMLTSDDSQDRRSESNTGVAGAAEVPNEADGHLGSSEKID : 50								
Hedgehog	: KVNEWLSRSDELLTSDDSYDKGSKSKTEVTVTTEVPNAIDXFFGSSEKIN : 50								
Human	: KVNEWFSRSDELLGSDDSHDGESESNAKVADVLDVLNEVDEYSGSSEKID : 50								
Rat	: KVNEWFSRTGEMLTSDNASDRRPASNAEAAVVLEVSNEVDGCFSSSKKID : 50								
Hare	: KVNEWFSRSNEMLTPDDSLDRRSESNAKVAGALEVPKEVDGYSGSTEKID : 50								
Alignment of BRCA1 protein sequences for the same region on the gene									
From "Bioinformatics and Molecular Evolution" by Paul Higgs and Teresa Attwood									

Conserved Regions in Genes in Divergent Species

- Species that are very different from one another have similar genes that generally perform identical or similar functions.
 Example: Marsupial vs. Placental
- Sometimes these genes undergo mutations due to natural selection, thus altering their function.

What is Multiple Alignment

Most simple extension of pairwise alignment **Given:**

- Set of sequences
- Match matrix
- Gap penalties

Find:

Alignment of sequences such that an optimal score is achieved.

Uses of Multiple Alignment

- A good alignment is critical for further analysis
- Determine the **relationships** between a group of sequences
- Determine the **conserved** regions
- Evolutionary Analysis
 - Determine the phylogenetic relationships and evolution
- Structural Analysis
 - Determine the overall structure of the proteins

Importance of MSA (I)

- If protein X with unknown function, has domains that are similar to domains of annotated proteins, then we can infer that protein X has a similar structure or function to the annotated proteins.
- A **Multiple Sequence Alignment** generally reveals more information than the analysis of a sequence by itself or even the analysis obtained from a Pairwise Sequence Alignment.

Aligning Kinases: An Example

p110β	SYVLGIGDRHSDNINVKKT <mark>G</mark> QLFHI <mark>DFG</mark> HILGNFKSKFGIKRERVPFILT						
p110δ	TYVLGIGDRHSDNIMIRES <mark>G</mark> QLFHI <mark>DFG</mark> HFLGNFKTKFGINRERVPFILT						
p110α	TFILGIGDRHNSNIMVKDD <mark>G</mark> QLFHI <mark>DFG</mark> HFLDHKKKKFGYKRERVPFVLT						
p110γ	TFVLGIGDRHNDNIMITET <mark>G</mark> NLFHI <mark>DFG</mark> HILGNYKSFLGINKERVPFVLT						
p110_dicti	TYVLGIGDRHNDNLMVTKG <mark>G</mark> RLFHI <mark>DFG</mark> HFLGNYKKKFGFKRERAPFVFT						
cAMP-kinase	QIVLTFEYLHSLDLIYR <mark>D</mark> LKP <mark>ENLLI</mark> DQQ <mark>G</mark> YIQVT <mark>DFG</mark> FAKRVKGRTWXLCGTPEYLA						
Multiple sequence alignment between a cAMP-kinase and 5 PL3 kinases. Green indicates total conservation							
5 TI-5 Killases. Ofeen indicates total conservation							
(identical next dress) laite block in diseter							

(identical residues), while blue indicates physicochemically conserved residues (belonging to the same partition of amino acids).

Pairwise vs. Multiple Alignment

Importance of MSA (II)

Given a group of sequences:

- Are they homologous?
 - MSA will reveal the relationship between them.
- Do they contain conserved regions?
 - Similar regions may reveal similar functions, eg. active sites.
- Can we build a family profile?
 - The profile can be used to search and fish out members of that family in databases.
- Can we build a consensus sequence?
 - The consensus sequence can be used for further analysis

Importance of MSA (III)

- MSA can help in the prediction of secondary and tertiary structures of new sequences.
- Homology Modeling:
 - MSA can be used for protein modeling programs.
- MSA's are used as input for constructing phylogenetic trees
 - Especially for distance-based algorithms such as UPGMA and Neighbor-Joining.

MSA: Exact vs. Heuristic

- The exact algorithm
 - traverses the entire search space
 - finds overall measure of alignment quality and tries to maximize this quality.
- The operation is computationally intensive.
- The largest computers can only optimally align a few sequences (7-8).
- Therefore, we have to use **heuristics**; i.e., faster algorithms, if we want to align many sequences.

Heuristic Algorithms

- Based on a **progressive pairwise** alignment approach
 - ClustalW (Cluster Alignment)
 - PileUp (GCG)
 - MACAW
- Builds a global alignment based on local alignments
- Builds local multiple alignments
- Based on Hidden Markov Models
- Based on Genetic algorithms.

Progressive Strategies for MSA

- A common strategy to the MSA problem is to **progressively align** pairs of sequences.
 - A starting pair of sequences is selected and aligned
 - Each subsequent sequence is aligned to the previous alignment.
- **Progressive alignment** is a greedy algorithm.

Iterative Pairwise Alignment

• The greedy algorithm:

align some pair while not done pick an unaligned string "near" some aligned one(s) align with the previously aligned group

• There are many variants to the algorithm.

Step One of Clustal: Pairwise Alignments 1) Perform pairwise alignments of all sequences Compare each sequence with each other calculate a distance matrix. Distance = Number А of exact matches В .87 divided by the С .59 .60 sequence length В (ignoring gaps). Α C **Distance Matrix**

Note that .87 means 87% identical.

Step Three of Clustal: Progressive Alignment

3) Use the **Guide Tree** to align the sequences

Align A and B first

• Then add sequence C to the previous alignment

Align the most closely related sequences first, then add in the most distantly related ones and align them to the existing alignment, inserting gaps if necessary.

Multiple Alignment Problems

- Does the quality of the **guide tree** matter?
 - Not for very closely related sequences, but perhaps for distantly related ones.
- Local minimum problem
 - If the initial alignments have a problem, they cannot be removed during subsequent steps.

Which Comparison Table?

- Single Parameter problem
 - You are using one weight matrix, and one set of penalties for all the sequences.
 - The best set of parameters for one part of the alignment may not be the best for another part.
- Do we use
 - BLOSUM 35 to best align the distant sequences
 - BLOSUM 90 to align the very closely related sequences, or
 - BLOSUM 62 as an average?

ClustalW: Package for MSA

- **ClustalW** [the **W** is from Weighted] is a software package for the MSA problem.
- Different weights are given to sequences and parameters in different parts of the alignment to and create an alignment that makes sense biologically.
- Scalable Gap Penalties for protein profile alignments
 - A gap opening next to a conserved hydrophobic residue can be penalized more heavily than a gap opening next to a hydrophilic residue.
 - A gap opening very close to another gap can be penalized more heavily than an isolated gap.

2012 Sami Khuri

Practical Considerations

- When to use Clustal?
- Can be used to align any group of protein or nucleic acid sequences that are related to each other over their entire lengths.
- Clustal is optimized to align sets of sequences that are entirely co-linear, i.e. sequences that have the same protein domains, in the same order.

When Not To Use Clustal

- Sequences do not share common ancestry.
- Sequences are partially related.
- Sequences include short non overlapping fragments.

Alignment Problems

- Final result sometimes depends on the **order** that sequences were analyzed.
- Gaps can make alignment unrealistically long.
- Sequences of different lengths can cause problems.
- Non-homologous regions can dilute homologous areas.
 - Only need to align the shared domain.
 - So trim away any excess sequence and realign.

DNA or Protein Alignment

• If we are comparing two or more sequences, is it better to align the **DNA**, or **Protein**?

It depends on what we want to compare.

- If protein function, then look at the amino acids
- If genetic changes, then look at the DNA
- The **initial mutations** take place at the DNA level, but the **evolutionary pressure** occurs at the protein level.

Structural Alignment

- What you really want to do is "align regions of similar function".
- These are the areas that are evolutionarily conserved. (Folds, domains, disulfide bonds)
- Problem
 - The computer does not know anything about the structure or function of the proteins.
- Solution
 - Use computer alignment as a first step, then manually adjust the alignment to account for regions of structural similarity.

Alternatives to CLUSTALW (I)

- **TCoffee:** A collection of tools for Computing, Evaluating and Manipulating Multiple Alignments of DNA, RNA, Protein Sequences and Structures.
 - Good for distantly related sequences too.
 - www.tcoffee.org
- MUSCLE: Multiple Sequence Comparison by Log-Expectation
 - www.drive5.com/muscle

Alternatives to CLUSTALW (II)

- MAFFT: Multiple Alignment using Fast Fourier Transform.
 - A good balance between accuracy and speed.
 - align.genome.jp/mafft
- **PRRN**: A web-based multiple sequence alignment package.
 - align.genome.jp/prrn

Alternatives to CLUSTALW (III)

- **Praline**: Multiple sequence alignment toolkit with several strategies to optimize alignment quality.
 - Has an option for "transmembrane structure prediction".
 - www.ibi.vu.nl/programs/pralinewww
- Blocks: Blocks Multiple Alignment Processor
 - Perfroms a local alignment (finds conserved blocks) blocks.fhcrc.org/blocks/process_blocks.html

Alternatives to CLUSTALW (IV)

- Meme: Multiple Em for Motif Elicitation
 - Performs local multiple alignment, searching for motifs.
 - meme.sdsc.edu/meme/cgi-bin/meme.cgi
- SAM: Sequence Alignment and Modeling System
 - collection of flexible software tools for creating, refining, and using linear hidden Markov models for biological sequence analysis
 - compbio.soe.ucsc.edu/sam.html

MSA Editors

- Once the multiple alignment is produced, it may be necessary to edit the sequence manually to obtain a more reasonable or expected alignment.
- Some of the considerations for an editor:
 - the use of colors to aid in the visual representation of the alignment,
 - the capability of recognizing the alignment format,
 - the ability of using the mouse to add, delete, or move sequences, thus allowing for an adequate windows interface.

MSA Editor and Formatter Programs

- Multiple Sequence Alignment programs:
 - CINEMA (Color Interactive Editor for Multiple Alignments)
 - GDE (Genetic Data Environment)
 - GeneDoc
 - MACAW
- Multiple Sequence Alignment programs:
 - Boxshade
 - CLUSTALX

