Spectrum of β Thalassemia Mutations and HbF Levels in the Heterozygous Moroccan Population

Wafaa Lemsaddek,¹ Isabel Picanço,² Filomena Seuanes,² Lahoucine Mahmal,³ Saâd Benchekroun,³ Mohammed Khattab,⁴ Paulo Nogueira,⁵ and Leonor Osório-Almeida^{1*}

¹Laboratório de Genética Molecular, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal ²Laboratório de Hematologia, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal ³Service Hémato–Oncologie, Hôpital 20 Août CHU Ibn Rochd, Casablanca, Morocco ⁴Service Hémato-Oncologie Pédiatrique, Hôpital d'Enfants CHU Rabat, Morocco ⁵Observatório Nacional de Saúde, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal

> A comprehensive hematological and molecular analysis of 57 β thalassemic heterozygotes, 28 homozygotes, 18 double heterozygotes, 3 compound heterozygotes β thal/ β S and one compound heterozygote β thal/Hb Newcastle, in 46 Moroccan families with at least one β thalassemia patient is reported. Six major mutations: $\beta^{0}39$ (C \rightarrow T), β^{o} FsCD8(-AA), β^{+} IVS1,nt6 (T \rightarrow C) and β^{o} IVS1,nt1 (G \rightarrow A), β^{o} FsCD6 (-A) and β^{+} -29 (A \rightarrow G) cap site account for 75% of the 86 independent β thal chromosomes studied. For the first time, an extensive mutation/haplotype study has been performed on the Moroccan population, and data are consistent with the geographical location of the country and historical links with both the Mediterranean and the Sub-Saharan Africa communities. Despite the heterogeneous spectrum of mutations, good genetic counseling can be offered to the carrier population. This study focuses on the analysis of fetal hemoglobin levels in β thalassemic heterozygotes and its correlation with β globin cluster polymorphic markers in this population. Fetal hemoglobin levels in heterozygotes vary from trace quantities to 17.9% (2.38 g/dl) of total hemoglobin in the adult. No statistically significant correlation was found, either between genders and HbF levels, or between the mutation and the HbF level, with the exception of mutation β^{0} FSCD6(–A). We have examined the α globin genotype and the β globin genotype of heterozygotes, namely, the extended haplotype, which includes the Xmnl site at -158 bp of the G_{γ} gene and the microsatellite $(AT)_xT_v$ at -540 bp of the β globin gene. In this sample, we confirm the existence of linkage disequilibrium between the C \rightarrow T variation at -158bp of Gy globin gene (Xmnl⁺) and Orkin's haplotypes III, IV, or IX (the 5' subhaplotype class A). At 5' β globin gene, we observe exclusively the allele (AT)₇T₇. In the β thalassemic heterozygotes studied, no correlation of those genetic markers with HbF levels is observed. Am. J. Hematol. 73: 161-168, 2003. © 2003 Wiley-Liss, Inc.

Key words: β thalassemia; mutations; extended haplotype; HbF; HPFH

INTRODUCTION

 β Thalassemia, being probably the most common single gene disorder worldwide, has not been fully characterized in the Moroccan population. Morocco is situated in the malaria belt, spanning from the tropics to the Mediterranean basin through Northern Africa, and from the Middle East to South East Asia, thus having an high incidence of this hemoglobinopathy.

 β Thalassemia is characterized by a reduced or defective production of the β globin chains, an imbalance in

Contract grant sponsor: Fundação para a Ciência e Tecnologia, Ministério da Ciência e da Tecnologia, to CIGEMH (Centro de Investigação em Genética Molecular Humana, research unit 9/94).

*Correspondence to: Leonor Osório-Almeida, Laboratório de Genética Molecular, Secção Autónoma de Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal. E-mail: mlo@fct.unl.pt

Received for publication 23 October 2002; Accepted 15 April 2003

Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/ajh.10358

162 Lemsaddek et al.

the coordinated synthesis of the hemoglobin subunits, triggering the bone marrow to produce immature erythrocytes. This is associated in the patient with variable degrees of anemia, bone marrow hyperplasia, splenomegaly, and other clinical features related to the severity of the anemic state. The synthesis of HbF moderates the α /non- α globin chain imbalance and it attains, in the homozygote, levels of 85%. In the heterozygote, the HbF levels are above 2.5% in the adult, with a dispersion of values up to 14% and are hereditarily transmitted [1,2]. Determinants for this type of hereditary persistence of fetal hemoglobin (HPFH) in normal adults, in β thalassemia and drepanocytosis are multiple and not yet clearly defined [3,4]. Evidence has been provided for the existence of quantitative trait loci influencing F cell number and HbF levels in 6q 22.3-q23.1 [5,6] and at least one other autosomal locus in 8g [7], as well as an F cell production locus in Xp22.2-p22.3 [8,9]. A study with twin pairs of European descent shows that the contribution of β globin cluster elements to the variability of HbF level accounts for about 13% of that variation, and 2% is related to age and sex [6]. Close linkage to the 5' subhaplotype and to the $(AT)_x T_y$ motif at -540 of the β globin gene in β thalassemia or Hb Lepore heterozygotes [1,10] or in homozygotes [11] of European descent, was also observed.

In the last 20 years, the analysis of β thal chromosomes from various populations led to the characterization of over 325 molecular alterations in the β globin gene, 179 of which cause β thalassemia. At present, the spectrum of β thal mutations and haplotypes in different populations of the Mediterranean basin and near Middle East is clear, except for Morocco.

In Morocco, hemoglobinopathies are a major public health concern due to the high incidence of abnormal hemoglobins (2.61% [12]) and to the high prevalence of malaria in the country. These factors, together with the historical contacts with Sub-Saharan Africa, could explain the upholding of morbid genes in the population, and their amplification derived from endogamy. A screening of the Moroccan population shows that the frequency of β thal (0.95%) opposes the rarity of that of α thal, and that the most frequent abnormal hemoglobins found are HbS (0.59%) and HbC (1.07%) [12,13].

For the first time, an extensive mutation/haplotype study is reported for the Moroccan population, together with the comparison of the phenotypic expression of HbF levels in heterozygotes with other polymorphic markers in 86 independent β thal chromosomes.

MATERIALS AND METHODS Population Sample

This study included 117 individuals from 46 families with at least one β thal homozygote, 3 genetic compounds β S/ β thal, and one genetic compound Hb New-

castle/ β thal in a total of 86 β thal independent chromosomes. These families were randomly selected from all over Morocco and referred to us by physicians from the hospitals of Casablanca and Rabat. Homozygotes and compound heterozygotes are transfusion dependent, with the exception of individuals I-1 from families 12, 25, 29, 35, II-1 from families 9, 21, 22, 27, 39, 45, and II-2 from family 37 who have thalassemia intermedia.

Hematological Studies

Blood samples were collected in EDTA and processed in Portugal within 8 hr. Hematological indices were determined by an automated cell counter. Electrophoretic hemoglobin separation was performed by isoelectrofocusing. When detected by the former procedure, HbF was quantified by the alkali denaturation method of Betke [14]. γ Chain typing in HbF was performed by HPLC [15]. LPLC was used to quantify HbA₂ [16]. The presence of HbS was confirmed by the sickling test.

DNA Preparation and Molecular Analysis

DNA was prepared from peripheral blood leukocytes by the salting-out procedure [17] followed by micro phenol-chloroform extraction. The haplotype of the β globin gene cluster was determined according to the previously described PCR-based assay and restriction enzyme analysis [18]. The following restriction sites of the RFLP haplotype were studied: $HincII/\varepsilon$, $HindIII/G\gamma$ and $A\gamma$, *HincII*/ $\psi\beta$ and 3' $\psi\beta$, *AvaII*/ β , and *HinfI*/3' β . Haplotypes were named according to Antonarakis et al. [19]. Extended haplotypes included the XmnI polymorphism at -158 bp of Gy globin gene, and polymorphism of $(AT)_{r}T_{v}$ motif at -540 bp β globin gene. The chromosomes were divided into two classes according to their extended 5' subhaplotype: class A, in which the XmnI site was present and class B, in which it was absent. AA^T, BB^T, and BA^T refer to the genotypes of β thalassemic carriers [1]. The configuration of $(AT)_{r}T_{v}$ alleles was determined by direct sequencing using the ABI Prism® Big Dye[®] technology from Applied Biosystems. Structural analysis of α globin genes was performed by DNA amplification [20,21] for the most frequent α globin gene deletions in the Mediterranean population ($\alpha^{3.7}$ and $\alpha^{4.2kb}$ [22]. Absence of promoter mutations at Ay globin gene was ascertained by DNA amplification and sequencing with primers R159-(5'TGAAACTGTG-GTCTTTATGAAAATTG3') and R161-(5'TGGCGTC-TGGACTAGGAGCTTATT3') and at δ globin gene with R117 (5'GGGCAAGTTAAGGGAATA3') and R119 (5'GGAGAAGAGCAGGTAGGT3'), [23]. The $\delta\beta$ Sicilian deletion was investigated according to Craig et al. [24].

Characterization of Thalassemia Mutations

ARMS (Amplification Refractory Mutation System) was used to screen for the presence of the four most

frequent mutations in the Mediterranean area [$\beta^{0}39$ (C \rightarrow T); $\beta^{+}IVS1,nt110$ (G \rightarrow A); $\beta^{+}IVS1,nt6$ (T \rightarrow C); $\beta^{0}IVS1,nt1$ (G \rightarrow A)] [18]. Confirmation of the ARMS result was performed by restriction enzyme digestion as follows: *MboI* for $\beta^{+}IVS1,nt110$ (G \rightarrow A) [25], *BsabI* for $\beta^{0}IVS1,nt1$ (G \rightarrow A), *MaeI* for $\beta^{0}39$ (C \rightarrow T), *Bsu36I* for $\beta^{0}FsCD6$ (–A), and *SfaNI* for $\beta^{+}IVS1,nt6$ (T \rightarrow C) [26]. Direct sequencing using ABI Prism[®] 3100 and ABI Prism[®] Big Dye^{TD} technology from Applied Biosystems was used to detect other mutations.

Statistical Analysis

The Levene test of homogeneity of variances was used. When there was homogeneity of variances, the one-way ANOVA procedure was applied. As post-hoc test, the Student–Newman–Keuls multiple comparison procedure was followed, as well as the Kruskal–Wallis test and the Mann–Whitney test according to Glantz [27].

RESULTS

Hematological Data

The hematological and genetic data concerning 46 Moroccan families with at least one β thalassemia patient are summarized in Table I. All β thal carriers presented microcytosis and hypochromia. The HbA₂ levels were within the standard values (HbA₂ $\geq 2.6\%$). The level of HbF in heterozygotes older than 4 years of age ranged from trace quantities to 2.38 g/dl (Table I). The individual I-1 from family 11 has HbA₂ of 2.8 and an abnormally high HbF level, 17.9% of total hemoglobin, with a Gy/Ay ratio > 1.

Molecular Analysis in the α and β Globin Loci: Correlation With HbF

Analysis of the α globin locus revealed four families (families 4, 5, 21, and 32) with the α globin genotype $(-\alpha^{3.7}/\alpha\alpha)$ and one individual from family 43 with $-\alpha^{3.7}/\alpha^{3.7}/\alpha^{3.7}/\alpha^{3.7}$ $\alpha\alpha\alpha$. In the β globin locus, the phase of the different restriction fragment length polymorphisms (RFLP haplotype) was ascertained by family studies (Table I). Haplotypes III, IV, and IX were found in 42 independent chromosomes, normal or β thal, in linkage disequilibrium with XmnI (+). As the same association had been previously observed in normal and in β that chromosomes carrying the Mediterranean haplotype III, IV, or IX, the β thal chromosomes were classified as having 5' subhaplotype class A [1]. The remaining chromosomes were associated with XmnI (-) and classified as having 5' subhaplotype class B. Gene sequencing of individual I-1 from family 19 revealed a polymorphism at position -369 C \rightarrow G of A γ globin gene (http://www.ncbi.nlm. nih.gov/SNP).

In this sample, only the $(AT)_7T_7$ allele at -540 of the β^A or β thal genes was found (Table I). The effect of gender, mutation type and the *Xmn*I allele on the expression status of HbF in Heterozygotes was investigated. No

β Thal Mutations and HbF Levels in Morocco 163

distinct HbF median values were observed between genders (Levene test, P = 0.165; one-way ANOVA, P = 0.396, Fig. 1A). The statistical analysis of the correlation HbF/ β thal mutation shows that there is no homogeneity of variances (Kruskal–Wallis test, P = 0.044). The Mann–Whitney test shows that the β^{0} FsCD6(–A) group was statistically different from $\beta^{0}39$ and from β^{0} FsCD8(–AA) by a *P* value of 0.014 and 0.035, respectively. All the other groups of mutations were homogeneous (Fig. 1B).

In order to analyze a homogeneous group, individual I-1 from family 11 (HbF 2.38 g/dl) and α thal carriers were excluded. This way, HbF values in the heterozygotes range from traces to 0.96 g/dl. Comparison of HbF levels among each genotypic group AA^T, BB^T, and BA^T shows no statistically significant differences (Kruskal–Wallis, P = 0.779, data not shown).

DISCUSSION

 β Thalassemia is a major genetic disease and a public health concern in some Mediterranean countries. In Morocco, as in the rest of Northern Africa, it has been selected by malaria and amplified by endogamy. The nonexistence of a national control program as well as the costs that it would imply prevent the existence of efficient therapeutic support to all the affected people, thus being a good mandatory prevention strategy.

The present study characterizes 86 independent β thalassemic chromosomes, from 46 unselected Moroccan families. Six major mutations: $\beta^0 39$ (C \rightarrow T), β^0 FsCD8(–AA), β^+ IVS1,nt6 (T \rightarrow C), β^0 IVS1,nt1 (G \rightarrow A), β^0 FsCD6 (–A) and β^+ -29 (A \rightarrow G) cap site account for 75% of the β thal chromosomes studied. The mutation β^+ +20 (C \rightarrow T) was found in one family, *in cis* with β^+ IVS2,nt745 (C \rightarrow G) as previously detected [28]. The heterogeneity of mutations in this population further extends to β^+ polyA (T \rightarrow C); β^0 25bp del 3'IVS1; β^0 IVS1,nt130 (G \rightarrow A); β^0 IVS2,nt1 (G \rightarrow A); β^0 IVS1,nt2 (T \rightarrow C); β^0 37 (G \rightarrow A); and β^+ -28 (A \rightarrow G).

Until now, no haplotype data had been gathered for the Moroccan population, thus preventing population studies and prenatal counseling. Eight out of 9 Mediterranean haplotypes are retrieved in Moroccan B thal chromosomes, but a different pattern of predominant mutations is observed when compared to other Mediterranean countries [29]. The most abundant mutations are $\beta^{0}39$ (15.5%) and β^{0} fsCD8(-AA) (15.5%) (Table II). The latter opposes the rarity of β ⁺IVS1,nt110 (2%), in association with haplotype I, as in Algeria [30], Tunisia [31], and Portugal [18,32], supporting the idea of a recent introduction in the Moroccan genetic background. The third most frequent mutation is β +IVS1,nt6 (T \rightarrow C) (14%) in haplotypes VI and VII as described in Portugal [18,32,33], whereas in Algeria, Tunisia, and Egypt it is associated with haplotype VI [34,35].

164 Lemsaddek et al.

TABLE I. Summary	of Hematological and	d Genetic Data Fron	ו 46 Moroccan	Families With	B-Thalassemia*

		Sev			Нb	Н	bF	HbΔ		YmnI	(AT	$(T)_x T_y$
	Subject	(age)	Haplotype ^a	Mutation	(g/dl)	(%)	(g/dl)	(%)	α Genotype	$(-158G\gamma)$	x/y	x/y
Fam. 1	I-1	F	^T II/VIII	в ⁰ 39/вА	9.8	Traces	Traces	4.3	αα/αα	_/_	7/7	7/7
	II-1	M(6)	$(II/II)^{T}$	β ⁰ 39/β ⁰ 39	8.4	7.5	0.63	2.3	αα/αα	_/_	nd	nd
Fam. 2	I-1	F	^T V/I	β ⁰ IVS1,nt1/βA	10.6	Traces	Traces	3.9	αα/αα	_/_	7/7	7/7
	II-1	M(8)	$(V/V)^{T}$	β ⁰ IVS1,nt1/β ⁰ IVS1,nt1	9.6	Traces	Traces	2.4	αα/αα	_/_	nd	nd
Fam. 3	I-1	F	^T II/VI	β ⁰ 39/βA	10.8	Traces	Traces	4.4	αα/αα	_/_	7/7	7/7
	II-1	M(5)	$(II/II)^{T}$	β ⁰ 39/β ⁰ 39	6.7	Traces	Traces	2.4	αα/αα	_/_	nd	nd
Fam. 4	I-1	Μ	^T V/I	β ⁰ IVS1,nt1/βA	13.3	3.7	0.49	4.1	$-\alpha 3.7 / -\alpha 3.7$	_/_	7/7	7/7
	II-1	M(6)	$(V/V)^{T}$	β ⁰ IVS1,nt1/β ⁰ IVS1,nt1	4.3	6.0	0.26	2.2	-α3.7/αα	_/_	nd	nd
Fam. 5	I-1	F(40)	^T III/VI	β ⁰ FsCD6/βA	8.3	4.0	0.33	3.6	αα/αα	+/-	7/7	7/7
	I-2	M(45)	^T III/IX	β ⁰ FsCD6/βA	13.3	3.7	0.49	5.1	-α3.7/αα	+/+	7/7	7/7
	II-1	F(1)	(III/III) ^T	β ⁰ FsCD6/β ⁰ FsCD6	8.0	50.2	4.02	2.7	αα/αα	+/+	7/7	7/7
	II-2	F(5)	^T III/IX	β ⁰ FsCD6/βA	11.8	5.2	0.61	4.7	αα/αα	+/+	7/7	7/7
Fam. 6	I-1	Μ	^T I/I	β+-28/βΑ	14	Traces	Traces	4.2	αα/αα	_/_	7/7	7/7
	I-2	F	^T IX/VIII	β ⁰ 25bp del3'IVS1/βA	11.3	Traces	Traces	3.7	αα/αα	+/	7/7	7/7
	II-1	M(6)	$(I/IX)^{T}$	β^+ -28/ β^0 25bp del3'IVS1	10	16.2	1.62	2.3	αα/αα	-/+	7/7	7/7
	II-2	F	TIX/I	β ⁰ 25bp del13'IVS1/βA	10.8	Traces	Traces	3.9	αα/αα	+/-	7/7	7/7
Fam. 7	I-1	М	^T V/I	β^{0} IVS1.nt1/ β A	13.1	Traces	Traces	4.3	αα/αα	_/_	7/7	7/7
	II-1	M(12)	^T V/Benin ^S	β^{0} IVS1.nt1/ β S	7.2	6.9	0.49	4.7	αα/αα	_/_	nd	nd
Fam 8	I-1	F	TIV/VII	$\beta^0 F_s CD8/\beta A$	12	Traces	Traces	4.5	αα/αα	+/	7/7	7/7
1 41111 0	II-1	M(5)	$(IV/VI)^{T}$	β^{0} FsCD8/ β^{0} FsCD8	8.4	15.9	1.33	2.1	nd	+/+	nd	nd
Fam 9	I-1	F		B ⁺ polyA/BA	13.8	Traces	Traces	3 3	αα/αα	-/+	nd	nd
I unit.)	II_1	F	$(I/I)^{T}$	β^{+} polyA/ β^{+} polyA	8.5	72.1	6.12	2.1	aalaa	_/_	nd	nd
Fam 10	II I I_1	F(32)	SBenin/III	RS/RA	12.3	17	0.12	2.1 4.1	aalaa	, _/+	nd	nd
1 ann. 10	II_1	F(5)	SBenin/IX ^T	BS/B ⁰ EsCD6	0.0	10.5	1.04	2.5	nd	_/+	nd	nd
	II-1 II_2	M(1)	nd	BS/BA	9.6	4.0	0.38	3.8	nd	nd	nd	nd
Fam 11	II-2 I 1	F(35)		B_{0} E^{0} E^{0	13.3	17.0	2 38	2.8		1.4	7/7	7/7
1°aiii. 11	I-1 II 1	M(6)+	$(\mathbf{W}/\mathbf{W})^{\mathrm{T}}$	$\rho^{0} \mathbf{E}_{0} \mathbf{C} \mathbf{D}_{0} \rho^{0} \mathbf{E}_{0} \mathbf{C} \mathbf{D}_{0} \mathbf{C} \mathbf{D}_{0$	0.0	17.9	2.30	2.0 nd	nd	+/-	nd	nd
Eam 12	11-1 T 1	E(40)	$(\mathbf{I}\mathbf{V}/\mathbf{I}\mathbf{V})$	$p rsc D_0/p rsc D_0$ $p^+ 101/p^0 Ws1 mt120$	0.0	45.7	5.64 0.27	2.0	nu ara/ara	+/+	nd	nd
Falli, 12	1-1 T 1	F(40) E	- T V/IV	$\beta = 101/\beta = 1051, \text{int } 100$	9.0	4 Teoreo	0.27 Tracco	2.0		_/_		
Fam. 15	I-1 11 1	F	V/IA Sp. : wT		10.8	1 races	Traces	3.9	αα/αα	-/+	///	///
E 14	11-1 T 1	F(13)	T21-11-/9	β5/β ⁻ 1ν51,πt1	8./ 10.5	10.0 Tasa a	0.92	0.9	αα/αα	_/_	na	na
Fam. 14	I-1 11 1	F	3DIACK/ ?	$\beta = 29/\beta A$	10.5	Traces	1 races	3.7	na	_/_	///	///
F 16	11-1 T 1	F(20)	(IX/3black)	$\beta^{\circ}FsCD6/\beta^{\circ}=29$	10.6	0./ T	0.71	2.4	αα/αα	+/-	nd	nd
Fam. 15	I-1	F	1V/?	β°FsCD8/βA	10.3	1 races	1 races	4.3	αα/αα	+/-	///	///
-	11-1	F(16)	$(IV/IV)^{2}$	β°FsCD8/β°FsCD8	8.3	45	3.73	2.5	αα/αα	+/+	nd	nd
Fam. 16	I-1	F	· 11/1	β°39/βΑ	10.5	Traces	Traces	4.0	αα/αα	_/_	///	///
	11-1	M(13)	(11/11) ¹ T	β°39/β°39	9.4	Traces	Traces	2.5	αα/αα	_/_	nd	nd
Fam. 17	1-1 TF 1	F	¹ IX/IX	β°IVS1,nt1/βA	10.5	Traces	Traces	3.9	αα/αα	+/+	1//	111
	11-1	F(10)	(IX/II) ¹ To see 17	β ⁶ IVS1,nt1/β ⁶ 39	7.0	26.2	1.83	2.3	αα/αα	+/-	nd	nd
Fam. 18	I-1	F(44)	¹ VII/I	β ⁺ IVS1,nt6/βA	12.3	Traces	Traces	2.7	nd	_/_	7/7	7/7
	II-1	M(7)	(VII/VII) ¹	$\beta^{+}IVS1,nt6/\beta^{+}IVS1,nt6$	8.8	5.3	0.47	3.1	αα/αα	_/_	7/7	7/7
	11-2	F(9)	(VII/VII) ¹	β ⁺ IVS1,nt6/ β ⁺ IVS1,nt6	9.4	7.0	0.66	3.1	αα/αα	_/_	7/7	7/7
Fam. 19	I-1	F(45)	¹ 3black/4chinese	β ⁺ -29/βA	12.4	7.8	0.96	4.2	αα/αα	_/_	7/7	7/7
	1-2	M(45)	'l/nd	β ⁺ IVS1,nt110/ β A	12.8	5.1	0.65	3.7	αα/αα	_/_	7/7	7/7
	11-1	M(6)	(I/3black) ¹	$\beta^{+}IVS1,nt110/\beta^{+}-29$	9.3	54	5.06	2.6	αα/αα	_/_	7/7	7/7
	II-2	M(9)	¹ I/4chinese	$\beta^{+}IVS1,nt110/\beta A$	11.5	3.0	0.34	4.1	αα/αα	_/_	7/7	7/7
	II-3	M(4)	¹ 3black/nd	β+-29/βΑ	10.7	6.1	0.65	4.4	αα/αα	_/_	7/7	7/7
Fam. 20	I-1	F(50)	^I IX/IX	β ⁰ FsCD6/βA	10.8	4.7	0.51	4.3	αα/αα	+/+	7/7	7/7
	I-2	M(60)	¹ IX/II	β ⁰ FsCD6/βA	13.2	1.8	0.24	4.4	αα/αα	+/-	7/7	7/7
	II-1	F(7)	(IX/IX) ¹	β^{0} FsCD6/ β^{0} FsCD6	7.4	16.7	1.23	2.1	αα/αα	+/+	7/7	7/7
	II-2	F(23)	TIX/II	β ⁰ FsCD6/β	10.5	3.0	0.31	4.6	αα/αα	+/-	7/7	7/7
	II-3	F(4)	IX/II	βΑ/βΑ	15.6	2.8	0.43	2.3	αα/αα	+/-	7/7	7/7
Fam. 21	I-1	F(56)	^T VI/I	β ⁺ IVS1,nt6/βA	13.0	1.5	0.19	3.1	αα/αα	_/_	7/7	7/7
	I-2	M(57)	TV/I	β° IVS1,nt1/ β A	14.2	1.2	0.17	4.3	-α3.7/αα	_/_	7/7	7/7
	II-1	M(20)	$(V/VI)^{T}$	β ⁰ IVS1,nt1/β ⁺ IVS1,nt6	9.9	39	3.86	3.6	-α3.7/αα	_/_	7/7	7/7
	II-2	M(18)	^T V/I	β ⁰ IVS1,nt1/βA	12.4	1.3	0.16	4.4	-α3.7/αα	_/_	7/7	7/7
	II-3	M(16)	I/I	βΑ/βΑ	13.1	0.5	0.06	2.6	nd	_/_	7/7	7/7
	II-4	M(10)	^T VI/I	β ⁺ IVS1,nt6/βA	13.7	0.6	0.08	3.8	-α3.7/αα	_/_	7/7	7/7
	II-5	F(8)	^T VI/I	β ⁺ IVS1,nt6/βA	11.7	1.3	0.15	3.3	-α3.7/αα	_/_	7/7	7/7
Fam. 22	I-1	F(48)	^T 3black/II	β+–29/βΑ	12.0	6.0	0.72	4.1	nd	_/_	7/7	7/7
	II-1	F(32)	(3black/3black) ^T	β+-29/β+-29	8.4	58.4	4.9	4.0	αα/αα	_/_	nd	nd

TADLE I. COntinued	TABL	EI.	Conti	าued
--------------------	------	-----	-------	------

		Sex			Hb	Н	bF	HbA		XmnI	(AT	$()_x T_y$
	Subject	(age)	Haplotype ^a	Mutation	(g/dl)	(%)	(g/dl)	(%)	α Genotype	(-158Gγ)	x/y	x/y
Fam. 23	I-1	F(25)	^T II/I	в ⁰ 39/вА	11.3	3.1	0.35	4.3	nd	_/_	nd	nd
	II-1	M(5)	$(II/II)^{T}$	β ⁰ 39/β ⁰ 39	5.4	nd	nd	1.7	nd	_/_	nd	nd
Fam. 24	I-1	F(50)	TIV/III	β ⁰ FsCD8/βA	12.5	1.0	0.12	4.4	αα/αα	+/+	7/7	7/7
	II-1	F(14)	(VII/IV) ^T	β ⁰ 37/β ⁰ FsCD8	5.4	11.0	0.59	2.1	αα/αα	-/+	nd	nd
Fam. 25	I-1	F(58)	(VII/IV) ^T	nd/B ^o FsCD8	10.9	2.2	0.24	4.2	αα/αα	-/+	nd	nd
Fam. 26	I-1	F(30)	TVII/I	β ⁺ IVS1.nt6/βA	nd	nd	nd	nd	nd	_/_	7/7	7/7
	II-1	F(1)	(VII/VID ^T	B ⁺ IVS1.nt6/B ⁺ IVS1.nt6	nd	nd	nd	nd	nd	_/_	nd	nd
Fam. 27	I-1	F(28)	^T VI/II	B ⁺ IVS1.nt6/BA	nd	nd	nd	nd	αα/αα	_/_	nd	nd
	II-1	M(2)	^T VI/II	β^+ IVS1.nt6/Hb Newcastle	nd	nd	nd	nd	αα/αα	_/_	nd	nd
Fam. 28	I-1	F(51)	TIV/II	B ^o IVS1.nt1/BA	nd	nd	nd	nd	αα/αα	+/	nd	nd
	II-1	F(12)	$(IV/IV)^{T}$	β^{0} IVS1.nt1/ β^{0} IVS1.nt1	nd	nd	nd	nd	αα/αα	+/+	nd	nd
Fam 29	I-1	M(34)	$(VI/VI)^{T}$	$\beta^{+}IVS1$ nt6/ $\beta^{+}IVS1$ nt6	8.1	14.2	1.15	6.8	nd	_/_	nd	nd
Fam 30	I-1	F(4)	$(VII/VII)^{T}$	$\beta^{+}IVS1$ nt6/ $\beta^{+}IVS1$ nt6	5.8	3.5	0.2	2.2	nd	, _/_	nd	nd
Fam 31	I-1	M	$T_{I/V}$	$\beta^{+}IVS1$ nt110/BA	11.2	4 1	0.46	4 1	αα/αα	_/_	7/7	7/7
1 uni. 51	II-1	F(7)	$(I/IID)^{T}$	$\beta^{+}IVS1$ nt110/ $\beta^{0}IVS2$ nt1	5.2	62.8	3.26	1.1	αα/αα	, _/+	nd	nd
Fam 32	II 1 I_1	F	IV/IV	β^{0} FsCD8/BA	11.6	4.4	0.51	4.0	aalaa	+/+	7/7	7/7
1 ann. 52	I_2	M		B ⁰ EsCD8/BA	12.5	Traces	Traces	3.0	-03 7/00		רוד	רור דוד
	I-2 II-1	M(10)		B ⁰ E ₂ CD8/B ⁰ E ₂ CD8	83	3.0	0.32	23	-4.5.7744	+/-	רוי רור	רור דוד
	II-1 II 2	F(13)		β^{0} E ₂ CD8/ β^{0} E ₂ CD8	7.1	4.2	0.32	2.5	nd	+/+	רו די רו ד	רו היו רו ד
Fam 33	II-2 I 1	F(15)	Т V /I V ТП/I	β Γ SCD0/ β Γ SCD0	0.7	3.2	0.29	2.5		-/	רו ו רו ר	רו ו רו ר
1 ⁻ aiii. 55	I-1 II 1	1 M(0)	$(\Pi/\Pi)^{T}$	β^{0} IVS1 nt2/ β^{0} IVS1 nt2	9.7 1 3	6.1	0.31	2.4		_/_	nd	nd
Eam 24	II-1 I 1	м(у) Е		ρ^{0} IVS1 pt2/ ρ^{0}	12.5	2.07	0.20	4.2		_/_	11u	7/7
Fam. 54	I-1 II 1	Γ M(12)	$(I/IX)^{T}$	$\beta^{0}37/\beta^{0}WS1$ pt2	7.8	2.97	0.57	4.2		—/+ _/+	nd	nd
Eam 25	II-1 I 1	E(28)	$(\mathbf{W} \mathbf{W})^{\mathrm{T}}$	$\rho^{0} E_{0} CD 2/\rho^{+} WS1 mt6$	7.0 9.1	0.J	Troppe	2.4	nd	-/+	nd	nd
Fam. 36	I-1 I 1	Г(20) М		$\beta FSCD0/\beta FVS1, into \beta^+ IVS1 pt6/\beta \Lambda$	12	Traces	Traces	2.7		+/-	110 7/7	7/7
1 ⁻ aiii. 50	1-1 II 1	M(14)		$\rho^{0}CD^{2}/\rho^{+}WS1$ nt6	0.2	14.0	1 27	4.7		-/+	nd	nd
Eam 27	II-1 I 1	М(14) Е	$(1\mathbf{V}/\mathbf{V}1)$	$\rho CD \delta/\rho T V S1, IIIO$	9.2	14.9 Tracco	1.37 Tracco	3.4 4.5		+/-	110 7/7	11u
Fam. 57	1-1 II 1	Г Г(9)		$p_{1}v_{52}, \frac{1}{10} + \frac{3}{10} p_{7}$	10.1	15.0	1 52	4.5	αα/αα	-/+	/// nd	///
	11-1	$\Gamma(0)$ M(4)	$(\mathbf{V}\mathbf{I}\mathbf{I}/\mathbf{I}\mathbf{V})^{\mathrm{T}}$	$\beta 1 \sqrt{52}, \frac{11}{43} \beta FSCD8$	9.0	13.9	1.32	2.0	αα/αα	+/-	nd	nd
E 20	11-2 I 1	M(4)	$(\mathbf{v}\mathbf{II}/\mathbf{I}\mathbf{v})$	ρ^{0} DVS1 = t^{0} (0.4	10.8	14.1 T	2.30 Tasasa	2.5	αα/αα	+/-		110 7/7
Fam. 38	I-1 II-1	Г Г(15)		β IVS1, nto/ β A	10.9	Traces	1 races	4.1	αα/αα	-/+	////	////
F 20	11-1 I 1	F(1.5)		β^{0} CD $(0, h)$	0.5	/3	4.87	2.2	αα/αα	_/_	na	na
Fam. 39	I-1 II-1	F M(17)		$\beta^{\circ}FsCD8/\betaA$	10	1 races	1 races	4.4	αα/αα	+/-	////	////
F 40	11-1 I 1	M(17)	$(1V/VI)^2$	$\beta^{\circ}FSCD8/\beta^{\circ}=29$	9.7	30.7	2.97	2.0	αα/αα	+/-	na	na
Fam. 40	I-1	F		$\beta^{*}FsCD6/\beta A$	7.4	0.6	0.04	4	αα/αα	+/+	///	///
F 41	II-1 I 1	M(8)	$(IX/IX)^2$	β [*] FsCD6/β [*] FsCD6	8.3	19.8	1.64	2.1	αα/αα	+/+	na	na
Fam. 41	I-1 II-1	F			10.6	3.9	0.41	4.0	αα/αα	+/-	///	///
E 42	II-1 I 1	F(/)	$(IV/VII)^2$	nd/β 1VS1, ntb	/.9	42.1	3.32	2.4	αα/αα	+/-	na	na
Fam. 42	I-1 I-2	F		$\beta^{\circ}IVS1,ntI/\betaA$	12.1	3.7	0.45	4.8	αα/αα	_/_	111	1//
	1-2 II-1	M	V/I	$\beta^{\circ}IVS1,ntI/\betaA$	13.3	4.5	0.6	4	αα/αα	_/_	1///	///
F 42	11-1 I 1	M(3)	$(V/V)^{r}$	$\beta^{\circ}IVS1,nt1/\beta^{\circ}IVS1,nt1$	7.6	2.7	0.2	2.3	αα/αα	_/_	nd	nd
Fam. 43	I-1	F		$\beta^{+}-29/\beta A$	10.8	Traces	Traces	4.0	-α3.7/ααα	_/_	1//	7/7
	II-1	M(17)	(11/11) ¹	$\beta^{0}39/\beta^{+}-29$	9.9	_5.5	0.54	2.4	-α3.7/αα	_/_	nd	nd
Fam. 44	I-1	F	¹ II/?	β°39/βΑ	11.7	Traces	Traces	4.2	αα/αα	_/_	7/7	7/7
	I-2	М	'II/I	β ⁰ 39/βA	11.6	Traces	Traces	4.9	αα/αα	_/_	7/7	7/7
-	II-1	F(4)	(II/II) ¹	β°39/β°39	6.4	55	3.52	2.0	αα/αα	_/_	7/7	7/7
Fam. 45	I-1	F	I/VII	nd	10.7	Traces	Traces	1.9	αα/αα	_/_	7/7	7/7
	II-1	M(8)	IX/I	β ^v sD6/nd	9.4	Traces	Traces	4.6	αα/αα	+/	nd	nd
Fam. 46	I-1	Μ	II/VIII	β'39/βΑ	12.2	Traces	Traces	4.1	αα/αα	_/_		
	I-2	F	'II/VIII	β'39/βΑ	11.1	Traces	Traces	4.6	αα/αα	_/_		
	II-1	M(9)	(I/II) ^T	β'39/β'39	12.9	66	8.5	2.2	αα/αα	_/_		
	II-2	F	(I/II) ^T	β'39/β'39	8.2	54	4.42	1.2	αα/αα	_/_		

*Abbreviations: M, male; F, female; nd, not determined.

^aHaplotype according to Antonarakis et al. (1985): ^T, β thal; ^S, β S; †dead; $G\gamma A\gamma = 0.25$ (Fam. 19, I-1) and 1.9 (Fam. 11, I-1).

 β^{0} IVS1,nt1 (G \rightarrow A), found mostly in Berbers in Algeria associated with haplotypes I, III, V, IX, and A [36,37], is found in Morocco in haplotypes IV and V with a frequency of 13%. β^{0} FsCD6 (–A) in haplotypes III and

IX, has a frequency similar to that of Algeria (haplotypes I, IX, and A) and Tunisia (haplotypes IX, A, and Va).

Fifty-six percent of the patients are homozygous for mutations and haplotypes, confirming the high degree of

в Mutation

Fig. 1. Absolute fetal hemoglobin (HbF) levels represented by box plots. (A) Individuals are grouped by sex: 14 males, 16 females. (B) Individuals are categorized according to the mutation type: N = number of individuals.

TABLE II.	Frequency	and Ha	plotype	Distribution	of β	Globin
Gene Muta	ations					

Mutation	No. of	Engguerau	Hanlatunas
Nutation	chromosomes	Frequency	Haplotypes
$\beta^0 39 (C \rightarrow T)$	14	15.5	I, II
β ⁰ FsCD8 (-AA)	14	15.5	IV, VI
$\beta^{+}IVS1,nt6 (T \rightarrow C)$	13	14	VI, VII
β^{0} IVS1,nt1 (G \rightarrow A)	12	13	V, IV, IX
β^0 fsCD6 (-A)	9	10	IX, III
β ⁺ −29 (A→G)	6	7	3black, II, VI
β^{0} IVS1,nt2 (T \rightarrow C)	3	3	II, IX
$\beta^0 37 (G \rightarrow A)$	2	2	VII, I
$\beta^{+}IVS1,nt110 (G \rightarrow A)$	2	2	Ι
β^{0} IVS1,nt130 (G \rightarrow A)	1	1	_
β^+ -101 (C \rightarrow T)	1	1	_
β^{0} IVS2,nt1 (G \rightarrow A)	1	1	III
β^+ -28 (A \rightarrow G)	1	1	Ι
$\beta^{+}IVS2,nt745 (C \rightarrow G)$	1	1	VII
$\beta^++20 (C \rightarrow T)$	1	1	VII
β^+ polyA (T \rightarrow C)	2	2	1
β ⁰ 25bp del 3'IVS1	1	1	IX
Hb Newcastle	1	1	II
βS	3	3	Benin
nd ^a	3	3	3
Total	90	100	-

^and, not determined.

endogamy in this society as previously observed for Algeria and Tunisia. Homozygosity was also observed for less frequent or rare mutations in this population such as β^0 IVS1,nt2 (T \rightarrow C) found in American blacks and β^+ polyA (T \rightarrow C) in Middle East.

The individual I-1 from family 12 is a compound heterozygote β^0 IVS1,nt130 (G \rightarrow A)/ β^+ -101 (C \rightarrow T) with a thalassemia intermedia phenotype [38], with an HbA₂ borderline (2%) and 4% HbF. The screening for mutations in the δ globin gene as well as for the most frequent α thal deletions was negative. However, it has not been excluded that another mutation in the α globin gene could be present causing the hematological phenotype.

In family 34, the β^{0} IVS1,nt2 (T \rightarrow G) (Saudi Arabian mutation) is in haplotype IX, associated with β^{0} 37 in haplotype I, as observed in Egypt [35].

An isolated individual (I-1, fam. 11), heterozygote for β^0 FsCD8 (–AA) has HbF of 2.38 g/dl, presents a G γ /A γ >1 and a borderline level of Hb A₂. Although the screening for the Sicilian $\delta\beta$ deletion was negative and the α genotype had no alterations, a deletion covering δ and part of β gene cannot be excluded. Anomalies in the δ gene have not been screened due to lack of genomic material.

The β^+ -29 mutation was found in three families (14, 19, and 22), associated with Orkin's haplotype 3 black and variable HbF levels as observed in the black population from America [39] and in one Chinese family [40,41]. Two families (39 and 43) present the β^+ -29

mutation associated with the haplotype II and VI and traces of HbF.

Data from individual I-1, family 19, deserves further analysis: high HbF (0.96 g/dl), a $G\gamma/A\gamma > 1$, the -29 β promoter mutation, and the -369 C \rightarrow G polymorphism in the $A\gamma$ promoter are observed. In silico analysis of the -369 A γ polymorphism predicts a protein binding site for protein sry beta of Drosophila melanogaster (http:// www.softberry.com), related to sox, a member of the HMG Box family of development-associated proteins [42]. The -369 A γ polymorphism has been found linked to separate β globin cluster markers, associated with low HbF levels in β that homozygotes, a situation not comparable to our study in heterozygotes [43]. Its possible role as modulator of expression of human globin genes [44] needs further investigation. This -369 A γ polymorphism is commonly found in the $G\gamma$ gene [45], but its role in gene regulation has not yet been described. In the absence of experimental data on the regulatory function of the Gy and Ay polymorphisms per se or as linkage markers of HbF expression, one could speculate that the -369 Ay polymorphism, in association with the reduction of β gene transcription by the TATA box mutation [46], possibly creates an imbalance of transcription factors, favoring an HbF elevation under the mild erythropoietic stress caused by β thalassemia heterozygous condition. Epidemiological studies of β thalassemia homozygotes, heterozygotes, and Hb Lepore heterozygotes [1,10,11], show the importance, for the regulation of fetal genes, of effector(s) located in both the adult and fetal domains of the cluster. The hypothesis of a regulatory mechanism based on transcription factors competition for the LCR cannot be excluded.

A review of the literature on HbF levels in heterozygous β thalassemia shows that the Moroccan population follows a similar distribution to that of the Portuguese [1]. No statistically significant correlation existed between sexes or mutation types and HbF levels. However, the β^{0} FsCD6 (-A) mutation exhibits statistically different behavior from the β^{0} 39 and β^{0} FsCD8 (-AA) mutations (*P* values of 0.014 and 0.035, respectively).

The variability of HbF levels in this study was examined and related to the genetic markers previously identified in other populations [1,10,11]. All the individuals studied were homozygous for the allele 7/7 at -530β globin gene. No differences between HbF levels and genotypes were found, contrary to previously observations in individuals of European descent [1,10,11]. Further studies will be required in order to explain the complex molecular mechanism of the HbF elevation in β thalassemia and more specifically in this heterozygous β thalassemic population of non-European descent.

Despite the heterogeneous spectrum of mutations, this evaluation allows the establishment of a prevention program by means of direct detection of the six predominant

β Thal Mutations and HbF Levels in Morocco 167

mutations, aiming at reducing the number of homozygote/double heterozygote births and preventing thalassemia major in Morocco.

ACKNOWLEDGMENTS

The authors thank Dr. Armandina Miranda for determination of the γ globin chain ratio, Dr. Paula Faustino for sequencing several samples, and Prof. Pedro Baptista for critical revision of the manuscript.

REFERENCES

- 1. Gonçalves I, Ducrocq R, Lavinha J, et al. Combined effect of two different polymorphism sequences within the β globin gene cluster on the level of HbF. Am J Hematol 1998;57:269–276.
- Vrettou C, Kanavakis E, Traeger-Synodinos J, et al. Molecular studies of β-thalassemia heterozygotes with raised HbF levels. Hemoglobin 2000;24(3):203–220.
- Sampietro M, Thein SL, Contreras M, Pazmany L. Variation of HbF and F-cell number with the Gγ XmnI (C–T) polymorphism in normal individuals. Blood 1992;79:832–833.
- Leonova JY, Kazanetz EG, Smetanina NS, Adekile AD, Efremov GD, Huisman THJ. Variability in the foetal haemoglobin level of the normal adult. Am J Hematol 1996;53:59–65.
- Craig JE, Rochette J, Fisher CA, et al. Dissecting the loci controlling fetal haemoglobin production on chromosomes 11p and 6q by the regressive approach. Nat Genet 1996;12(1):58–64.
- Garner CP, Tatu T, Reittie JE, et al. Genetic influences on F cells and other hematologic variable: a twin heritability study. Blood 2000;95(1):342–346.
- Garner CP, Tatu T, Best S, Creary L, Thein SL. Evidence of genetic interaction between the beta-globin complex and chromosome 8q in the expression of fetal hemoglobin. Am J Hum Genet 2002;70(3):793– 799.
- Miyoshi K, Kaneto Y, Kawai H, et al. X-linked dominant control of F-cells in normal adult life: characterization of the Swiss type of hereditary persistence of foetal haemoglobin regulated dominantly by gene(s) on X chromosome. Blood 1988;72:1854–1866.
- Dover GJ, Smith KD, Chang YC, et al. Foetal haemoglobin levels in sickle cell disease and normal individuals are partially controlled by an X-linked gene located at Xp22.2. Blood 1992;80:816–824.
- 10. Gonçalves I, Henriques A, Raimundo A, et al. Fetal Hemoglobin Elevation in Hb Lepore heterozygotes and its correlation with β globin cluster linked determinants. Am J Hematol 2002;69:95–102.
- 11. Ragusa A, Lombardo M, Cherif C, et al. Genetic epidemiology of β -thalassaemia in Sicily: do sequences 5' to the G γ gene and 5' to the β gene interact to enhance HbF expression in β -thalassaemia. Am J Hematol 1992;40:199–206.
- Benchemsi N, Quessar A, Azelmat N, et al. Enquête epidemiologique sur les hemoglobinopathies au Maroc, Communication Orale à la 1^{ére} Journée Scientifique de Thalassemie et Drepanocytose, Casablanca, Morocco, 2001. p 11–28.
- Nadifi S, Beldjord C, Elion J, et al. Globin gene mutation in Morocco: genetic and anthropological approach. Cell Pharmacol 1996;3:129– 133.
- Betke K, Marti HR, Schlicht I. Estimation of small percentages of foetal haemoglobin. Nature 1959;184:1877–1878.
- Shelton JB, Shelton JR, Schroeder WA. High performance liquid chromatographic separation of globin chains on a large-pore C4 column. J Liq Chromatogr 1984;7:1969–1977.
- Marti HR, Butler R. Hämoglobin A₂—Vermehrung bei der Schweizer Bevölkerung. Acta Haematol 1961;26:65–74.

168 Lemsaddek et al.

- Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16:1215.
- Faustino P, Osório-Almeida L, Barbot J, et al. Novel promoter and splice junction defects add to the genetic, clinical or geographic heterogeneity of β-thalassaemia in Portuguese population. Hum Genet 1992;89:573–576.
- Antonarakis SE, Kazazian HH Jr, Orkin SH. DNA polymorphism and molecular pathology of the human globin gene clusters. Hum Genet 1985;69:1–14.
- 20. Dodé C, Krishnamoorthy R, Lamb J, Rochette J. Rapid analysis of $-\alpha^{3.7}$ thalassaemia and $\alpha\alpha\alpha^{\text{anti } 3.7}$ triplication by enzymatic amplification analysis. Br J Haematol 1993;83:105–111.
- Baysal E, Huisman THJ. Detection of common deletional α-thalassaemia-2 determinants by PCR. Am J Hematol 1994;46:208–213.
- Peres MJ, Romão L, Picanço I, Bathalha L, Magalhães HA, Martins MC, Lavinha J. Molecular basis of α-thalassaemia in Portugal. Hemoglobin 1995;19(6):343–352.
- Tzetis M, Traeger-Synodinos J, Kanakis E, Metaxotou-Mavrommati A, Kattamis C. The molecular basis of normal HbA₂ (type 2) β-thalassemia. Hematol Pathol 1994;8:25–34.
- Craig JE, Barneston RA, Prior J, Raven JL, Thein SL. Rapid detection of deletions causing δβ-thalassemia and hereditary persistence of fetal hemoglobin by enzymatic amplification. Blood 1994;83(6):1673– 1682.
- Lindeman R, Hu SP, Volpato F, Trent RJ. Polymerase chain reaction (PCR) mutagenesis enabling rapid non-radioactive detection of common β-thalassaemia mutations in Mediterraneans. Br J Haematol 1991;78:100–104.
- Cabeda JM, Correia C, Estevinho A, et al. Unexpected pattern of β-thalassaemia patients from northern Portugal. Br J Haematol 1999; 105:68–74.
- Glantz SA. Primer of bio-statistics. 4th edition. New York: McGraw-Hill; 1997.
- Gonzalez-Redondo JM, Stoming TA, Kutlar A, et al. A C→T substitution at nt –101 in a conserved DNA sequence of the promotor region of the β-globin gene is associated with "silent" β-thalassemia. Blood 1989;73(6):1705–1711.
- Cao A. β Thalassaemia mutations in Mediterranean populations. Br J Haematol 1989;71:309–312.
- Rouabhi F, Lapouméroulie C, Amselem S, et al. DNA haplotype distribution in Algerian β thalassaemia patients. Hum Genet 1988;79: 373–376.
- Chibani J, Vidaud M, Duquesnoy P, et al. The peculiar spectrum of β-thalassemia genes in Tunisia. Hum Genet 1988;78:190–192.
- 32. Faustino P, Pacheco P, Loureiro P, Nogueira PJ, Lavinha J. The geo-

graphic pattern of beta-thalassaemia mutations in the Portuguese population. Br J Haematol 1999;107(4):903–904.

- 33. Efremov DG, Dimovski AJ, Baysal E, et al. Possible factors influencing the haemoglobin and fetal haemoglobin levels in patients with β-thalassaemia due to a homozygosity for the IVS-I-6(T→C) mutation. Br J Haematol 1994;86:824–830.
- Bennani C, Tamouza R, Rouabhi F, et al. The spectrum of β-thalassaemia in Algeria: possible origins of the molecular heterogeneity and a tentative diagnostic strategy. Br J Haematol 1993;84(2):335–337.
- Novellettto A, Hafez M, Deidda G, et al. Molecular characterization of β-thalassemia mutations in Egypt. Hum Genet 1990;85(3):272–274.
- Beldjord C, Lapouméroulie C, Baird ML, et al. Four new haplotypes observed in Algerian β thalassemia patients. Hum Genet 1983;65:204.
- Bennani C, Bouhass R, Perrin-Percontal P, et al. Anthropological approach to the heterogeneity of β-thalassemia mutations in northern Africa. Hum Biol 1994;66:369–382.
- Maragoudaki E, Kanavakis E, Traeger-Synodinos J, et al. Molecular, haematological and clinical studies of the −101 C→T substitution of β-globin gene promoter in 25 β-thalassemia intermedia patients and 45 heterozygotes. Br J Haematol 1999;107:699–706.
- Gonzalez-Redondo JM, Stoming TA, Lanclos KD, et al. Clinical and genetic heterogeneity in black patients with homozygous β-thalassemia from the Southeastern United States. Blood 1988;72(3):1007– 1014.
- Atweh GF, Zhu DE, Forget BG. A novel basis for δβ-thalassemia in Chinese family. Blood 1986;68(5):1108–1113.
- Atweh GF, Zhu XX, Howard EB, Dowling CH, Kazazian HH Jr, Forget BG. The β-globin gene on the Chinese δβ-thalassemia chromosome carries a promoter mutation. Blood 1987;70(5):1470–1474.
- Ohe K, Lalli E, Sassone-Corsi P. A direct role of SRY and SOX proteins in pre-mRNA splicing. Proc Natl Acad Sci U S A 2002;99(3): 1146–1151.
- 43. Samakoglu S, Philipsen S, Grosveld F, Luleci G, Bagci H. Nucleotide changes in the gamma-globin promoter and the (AT)_xN_y(AT)_z polymorphic sequence of β LCRHS-2 region associated with altered levels of HbF. Eur J Hum Genet 1999;7(3):345–356.
- 44. Brown KE, Amoils S, Horn JM, Buckle VJ, Higgs DR, Merkenschlager M, Fisher AG. Expression of α - and β -globin genes occurs within different nuclear domains in haemopoietic cells. Nat Cell Biol 2001;3(6):602–606.
- 45. Dimovski AJ, Oner C, Agarwal S, et al. Certain mutations observed in the 5' sequences of the G gamma- and A gamma-globin genes of β S chromosomes are specific for chromosomes with major haplotypes. Acta Haematol 1991;85(2):79–87.
- 46. Antoniou M, Boer E, Spanopoulou E, Iman A, Grosveld F. TBP binding and the rate of transcription initiation from the human β-globin gene. Nucleic Acids Res 1995;23(17):3473–3480.