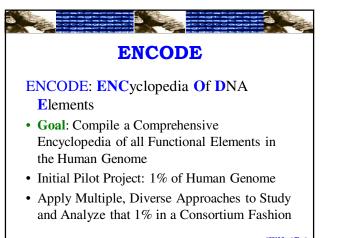
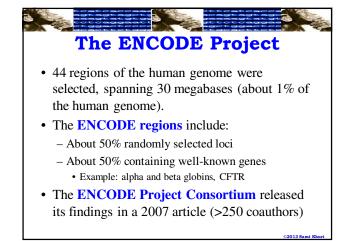
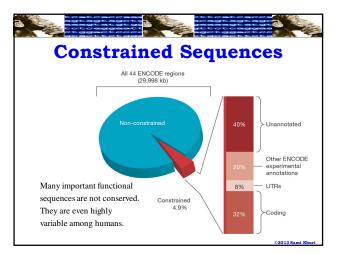
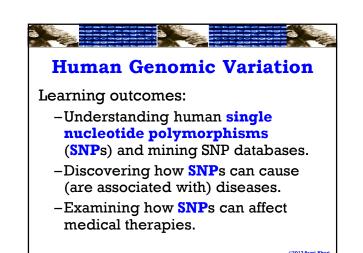

- As we build upon the foundation laid by the **Human Genome Project**, our ability to explore uncharted frontiers will hinge upon melding biological know-how with expertise in computer science, physics, math, clinical research, bioethics, and many other disciplines.
- A firm understanding of the powerful potential of **genomics**, **proteomics**, and **bioinformatics** will be essential to success in this amazing new world. Discovering Genomics, Campbell. 2007 Preface by Francis Collins

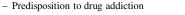








Major Findings of ENCODE

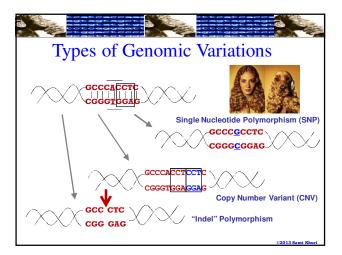

- The majority of all nucleotides are **transcribed** as part of
 - Coding transcripts
 - Noncoding RNAs
 - Random transcripts that may have no biological function.
- Many genes have multiple, previously undetected, transcription start sites
 - Regulatory sequences are as likely to be upstream as downstream of the major start sites.

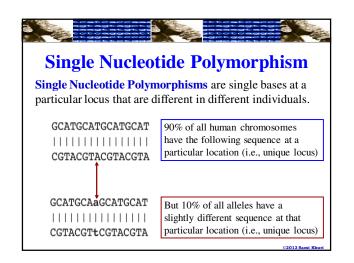
- Collection of genomic variations makes any person a unique human being. It contributes to that person's:
 - Potential to learn
 - Predisposition to disease

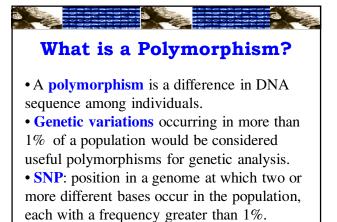
- Response to pharmaceutical interventions
- There are variations within, as well as, between populations.
- · The variation between individual genomes has sparked a biotech boom in the area of SNP discovery.

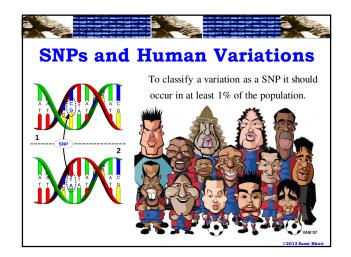
Reference Human Sequence

- The reference sequence for the human genome should not be viewed as just one long string of static characters.
- Instead, it is riddled with variable sites all along the sequence.
- Given that the number of people exceeds the number of bases in the genome, we can imagine that every base in the genome has had its chance to be different. [Baxevanis & Ouellette, 2005]

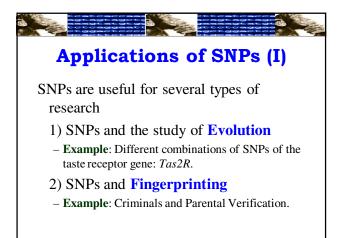

Variation in Human Genome

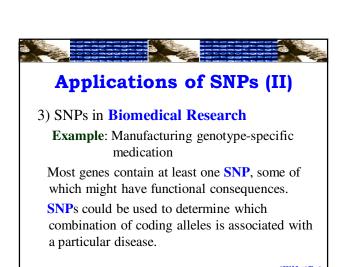

- How much variation is there in the human genome?
 - The biomedical field is interested in diseasecausing variations.
 - What is often considered as a "simple" disease has complex genomic underpinnings.
- How are genomic variations used to determine the causes of complex phenotypes?
- How do genomic variations influence effective medical interventions?

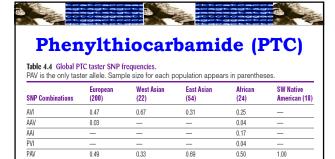

Human Genetic Variation


Copy Number Variation (CNV)

- A polymorphism in which the number of repeats of a DNA sequence at a location varies from person to person
- Single Nucleotide Polymorphism (SNP) - Major differences between human beings
- Other structural variations
 - Includes deletions, insertions, duplications, inversions, and translocations



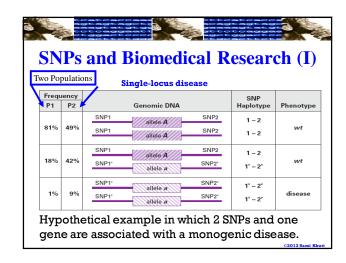

Where do SNPs Fall?


- SNPs may fall:
 - -within coding sequences of genes,
 - -noncoding regions of genes, or
 - -in the intergenic regions between genes.

SNPs and Haplotypes

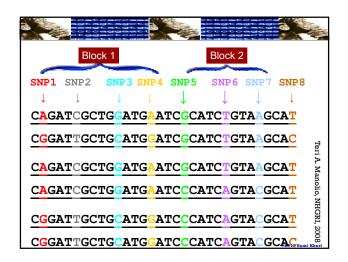
- SNPs lying in close proximity in genome regions that tend to be unaffected by genomic shuffling during meiosis are usually inherited together
- Haplotypes are groups of SNPs transmitted in "blocks".
- These blocks can be characterized by a subset of their SNPs (tags).

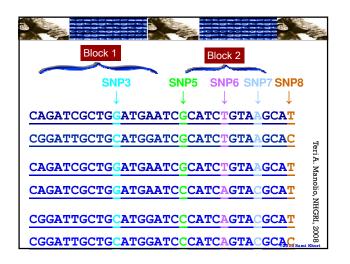
To some individuals the chemical compound

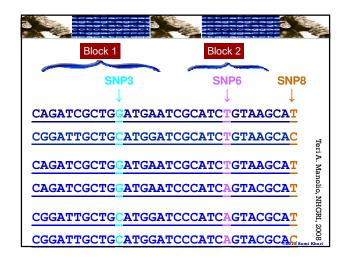

phenylthiocarbamide (**PTC**) has an intensely bitter taste, while to others it is tasteless. It depends on the SNPs that are present in the receptor gene *Tas2R*.

SNPs and Evolution

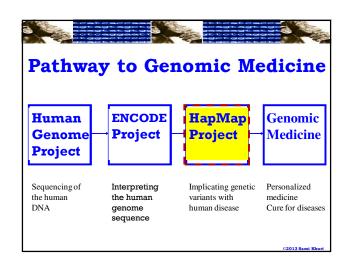
- **SNP**s can be used in the study of **evolution**.
- Scientists tested 6 nonhumans primates and found that they were all tasters, in other words, they had the PAV form of *Tas2R*.
- Consequently, humans acquired (evolved) the other SNPs: AVI, AAV, AAI and PVI, after the split from our nearest relative, the chimpanzee.




A National Center for Biomedical Computing, Harvard University



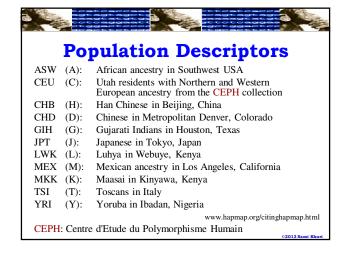
N	Ps :	and Biome	dical R	eseard	h (II
				Cocui	
Frequ	iency			SNP	
P1	P2	Genomic DN	AL	Haplotype	Phenotype
		SNP1 altele A	SNP2	1-2	
81%	49%	SNP1	SNP2		wt
		allele A	0.11.2	1 – 2	
		SNP1	SNP2	1-2	
18%	42%	SNP1'	SNP2'	1'-2'	wt
		allele a		1'-2'	
		SNP1'	SNP2'	1' - 2'	
1%	9%	SNP1'	SNP2'		disease
	- /-	allele a	SINF2	1' – 2'	


The two SNPs: 1' and 2', and the recessive allele *a* are in **linkage disequilibrium**.

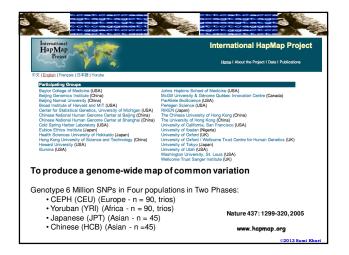
	Tag	s SNP		
Block 1	Block 2	Singleton	Frequency	
			35%	
	CTC		30%	
	GTT		10%	Teri A
	GAT		8%	. Manc
	CAT		7%	lio, NH
	CAC		6 %	Teri A. Manolio, NHGRI, 2008
	other	haplotypes	4 8 02013 8	0 00 Sami Khuri

HapMap Project

- Systematic effort to try to catalogue the common variants that exist across human populations.
- Goal: Implication (Correlation) of genetic variants (SNPs and haplotypes) with human diseases.


International Haplotype Map Project

- The goal of the International Haplotype Map Project is to develop a haplotype map of the human genome.
- The "HapMap" describes common patterns of human DNA sequence variation, and is a key source for researchers to use to find genes affecting health, disease, and responses to drugs, and environmental factors.

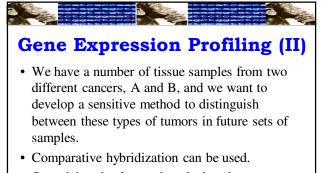

[Baxevanis & Ouellette, 2005]

Population of HapMap
 International HapMap Project analyzes DNA from populations with African, Asian, & European ancestry.

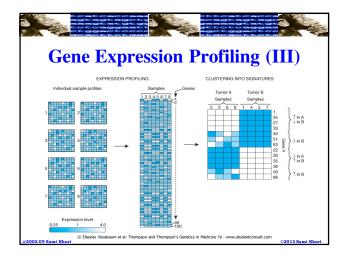
- The DNA samples came from a total of 270 people.
 - Nigeria: 30 sets of samples from two parents and an adult child (each such set is called a trio) from Yoruba people of Ibadan.
 - Japan: 45 unrelated individuals from the Tokyo area provided samples.
 - China: 45 unrelated individuals from Beijing provided samples.
 - USA: 30 trios collected in 1980 from U.S. residents with northern and western European ancestry by CEPH.

Correlation of Common SNPs Sequence data collected by the project confirmed that the vast majority of common SNPs are strongly correlated to one or more nearby proxies: 500,000 SNPs provide excellent power to test over 90% of common SNP variation in out-of-Africa populations, with roughly twice that number required in African populations

Rabat 2013 Human Genome Variation


	01 100 200 300 400 500 6	KOM 70M 80M	901 1001 1101	1 1200 1300 1400 150	M 160M 170M
rs21627	DEBNI contins (09: Allele Frequencies in HapMap P	opulations	_		
Panel	Description	Frequency of C (ref)	Frequency of T	donatha, ditt, thatti	والع أكبر ومحمد
ASW(A)	African ancestry in Southwest USA	55%	45%		
CEU(C)	Utah residents with Northern and Western European ancestry from the CEPH collection	69%	31%	1	
CHB(H)	Han Chinese in Beijing, China	25%	75%	• •	
CHD(D)	Chinese in Metropolitan Deriver, Colorado	25%	75%		
GIH(G)	Gujarati Indians in Houston, Texas	60%	40%		
JPT(J)	Japanese in Tokyo, Japan	36%	64%	134560k	
LWK(L)	Luhya in Webuye, Kenya	40%	60%	1343608	
MEX(M)	Mexican ancestry in Los Angeles, California	59%	41%	rs1346441(+)	
MKK(K)	Maasai in Kinyawa, Kenya	72%	28%	G	
TSI(T)	Toscans in Italy	73%	27%		rs7719045(+)
YRI(Y)	Yoruba in Ibadan, Nigeria	50%	50%		A ACHINA LAND
SNP: 1	rs2162709 on chromosome	5	1	C2162709(+) C HCHDGJL/RKTY	HENDOSETKY

		Sample Ascertainm	ent		Ger	otype	Detail	NEW	All	eles
ss#	Population	Individual Group	Chrom. Sample Cnt.	Source		с/т	т/т	HWP	С	т
s23357318	AFD EUR PANEL	European	38	IG	0.368	0.526	0.105	0.584	0.632	0.368
	AFD AFR PANEL	African American	40	IG	0.200	0.600	0.200	0.371	0.500	0.500
	AFD CHN PANEL	Asian	36	IG	0.111	0.278	0.611	0.273	0.250	0.750
s <u>5212170</u>	HapMap-CEU	European	114	IG	0.333	0.614	0.053	0.020	0.640	0.360
	HapMap-HCB	Asian	90	IG	0.044	0.422	0.533	0.479	0.256	0.744
	HapMap-JPT	Asian	88	IG	0.159	0.500	0.341	1.000	0.409	0.59
	HapMap-YRI	Sub-Saharan Africar	118	IG	0.220	0.508	0.271	1.000	0.475	0.52
				_						
Summary H		idual Founders Ind	ividual Genot rerlap Conf							
0	497+/-0.040 1263		0	iiot						

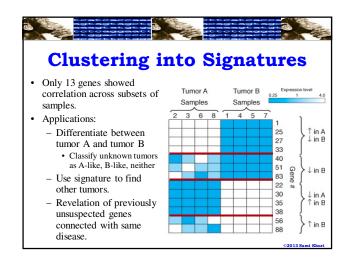

- diagnosis precision and optimization of therapy in cancer.Expression profiling and clustering are
- Expression profiling and clustering are used to create signatures that are used to guide diagnosis and treatment.

Genetics in Medicine by Nussbaum et al., 2007

• Organizing the data and analyzing them to extract key information is very challenging.

Genetics in Medicine by Nussbaum et al., 2007

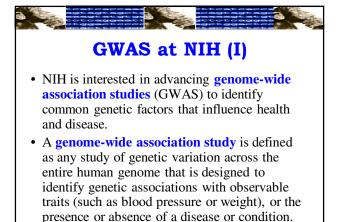
Gene Expression Pro	filing (IV) Individual sample profiles
• Eight tissue samples from two different cancers:	1
Cancer A: samples 1 to 4,Cancer B: samples 5 to 8.	3 4
• Comparative hybridization used to measure simultaneously the	5 6
level of mRNA expression in 100 genes in the tissue sample,	7 8
relative to a standard sample.	Expression level 0.25 1 4.0 ©2013 Sami Khuri


800 Expression Values

- Organize the eight sample tissues with 100 gene profile expressions into a Samples/Genes matrix where the Genes are the rows and the Samples are the columns.
- Statistics and Bioinformatics tools are used to organize and analyze the data to extract key information.

Correlation and Clustering

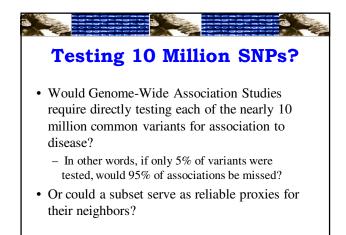
- Use sophisticated statistical and bioinformatics tools to find groups of genes whose expression seems to **correlate**: move up or down together, between and among the samples.
- Grouping genes by their patterns of expression across samples is termed **clustering**.
- Clusters of genes whose expression correlates with each other and with a particular set of sample constitute an **expression signature** characteristic of those samples.



Genome-Wide Association Study

- Method for interrogating all 10 million variable points across human genome.
- Variation is inherited in groups, or blocks, so not all 10 million points have to be tested.
- NIH is interested in advancing **genome-wide association studies** (GWAS) to identify common genetic factors that influence health and disease.

Teri A. Manolio, NHGRI, 2008

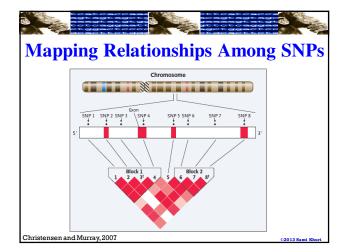


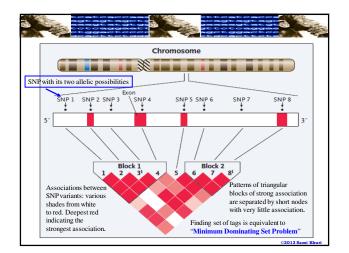
GWAS at NIH (II)

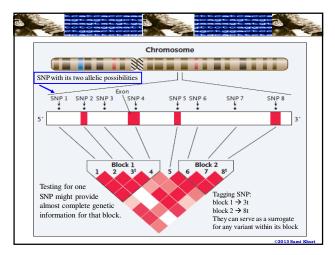
• Whole genome information, when combined with clinical and other phenotype data, offers the potential for increased understanding of basic biological processes affecting human health, improvement in the prediction of disease and patient care, and ultimately the realization of the promise of **personalized medicine**.

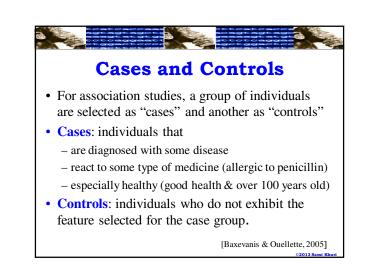
GWAS at NIH (III) • Rapid advances in understanding the patterns

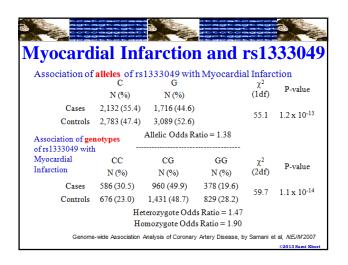
of human genetic variation and maturing high-throughput, cost-effective methods for genotyping are providing powerful research tools for identifying **genetic variants** that contribute to **health** and **disease**.

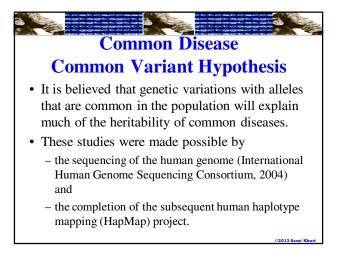


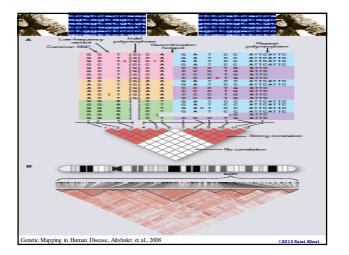

etic Mapping in Human Disease, Altshuler et al., 2008

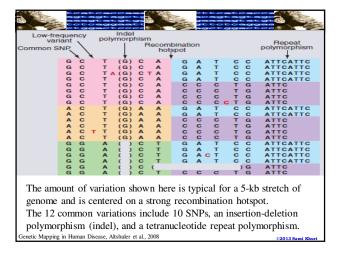

Low Recombination Rates

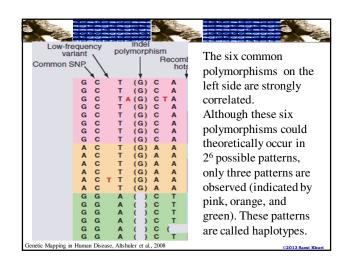

- Each disease-causing mutation arises on a particular copy of the human genome and bears a specific set of common alleles in cis at nearby loci, termed a haplotype.
- Because the recombination rate is low (about 1 crossover per 100 megabases (Mb) per generation), disease alleles in the population typically show association with nearby marker alleles for many generations, a phenomenon termed linkage disequilibrium (LD)

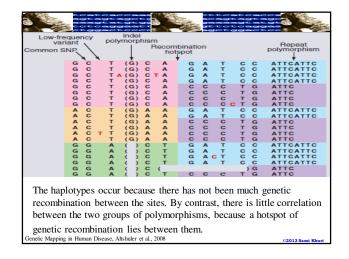

Genetic Mapping in Human Disease, Altshuler et al., 2008

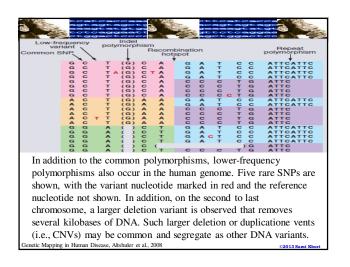


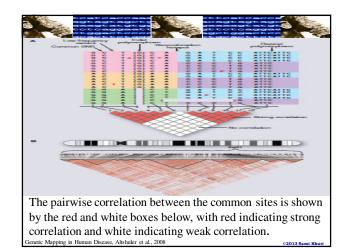






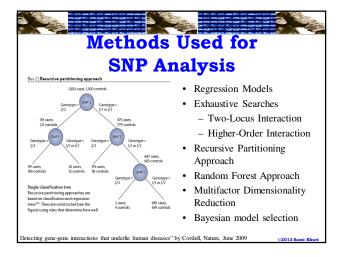


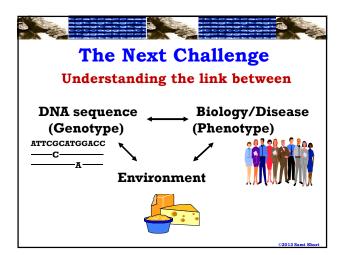

Low-free		псу	DO		ndel		n							
varia Common SN		/	¥, 200	.,	ļ		Reco	nbi otsp		on				Repeat polymorphism
	G	C	ÌТ	1	(Ġ)	С	Α	1	G	Α	т	С	С	ATTCATTC
Common	G	С	т		(G)	С	Α		G	Α	т	С	С	ATTCATTC
	G	С	т	A	(G)	С	ТΑ		G	Α	т	С	С	ATTCATTC
and	G	С	т		(G)	С	Α		G	Α	т	С	С	ATTCATTC
rare	G	С	т		(G)	С	A		С	С	С	т	G	ATTC
genetic	G	С	т		(G)	С	A		С	С	С	т	G	ATTC
variation	G	С	т		(G)	С	Α		С	С	С	т	G	ATTC
in 10	G	С	т		(G)	С	Α		С	С	CC	-	G	ATTC
	Α	C	Ţ		(G)	A	A		G	Α	т	С	С	ATTCATTC
individuals,		C C	Ţ		(G)	A	A		G	AC	T C	C	С	ATTCATTC
carrying	A	_	Ţ		(G)	A	A		c	c	_	÷	G	ATTC
20 distinct	A	C C	TT		(G) (G)	A	A		c	c	C C	÷	G	ATTC
copies of	Ä	č	÷÷		(G)	Â	Â		č	č	č	÷	G	ATTC
	G	G	A		(4)	c	Ť		G	Δ	т	ċ	C	ATTCATTC
the human	G	G	Ā			č	÷		G	Â	÷	č	č	ATTCATTC
genome.	G	G	Â			č	÷		G	ÂC		č	č	ATTCATTC
-	G	G	Â			č	÷		G	Ā	÷	č	č	ATTCATTC
	G	G	Â			č	Ċ					1	G	ATTC
	Ğ	Ğ	Â		1	č	Ът		С	С	С	т	G	ATTC

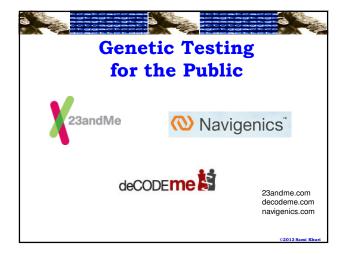


	- AN				
Similarly, the six	binati spot	on			Repeat polymorphism
common	G	A	Ţ	СС	ATTCATTC
polymorphisms on	G G	A A A	T T	с с с с с с	ATTCATTC ATTCATTC ATTCATTC
the right side are	С	С	С	TG	ATTC
strongly correlated	C C C	C C C C	C C C C	T G T G	ATTC ATTC ATTC
and reside on only	G	A	т	СС	ATTCATTC
two haplotypes.	G C C	С	С	C C T G T G	ATTCATTC ATTC ATTC
	C C	c	C C	TG	ATTC
The haplotypes are	G	A	T	C C C	ATTCATTC
indicated by blue	G	A	• •	сс	
	G	Α	т	CC	ATTCATTC
and purple.	С	С	С	ΤĞ	ATTC
Genetic Mapping in Human Disease, Altshuler et al., 2008					©2013 Sami Khuri

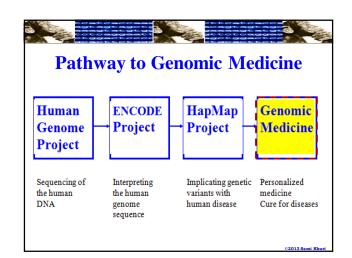
multidisciplinary and multinational project created to gain a greater understanding of the type and amount of human DNA sequence variation, its history, and the relationship of its contemporary organization to the continuous distribution of measures of human health among individuals in the population at large (such as blood pressure or plasma cholesterol levels). http://droog.mbt.washington.edu/mdecode

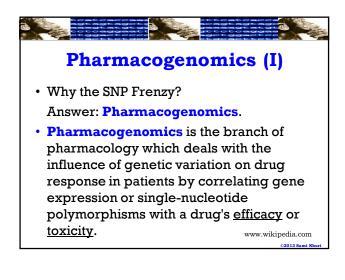

Selecting Potential Markers • For cases-control studies, a selection


of SNPs is genotyped in both the case and the control groups, and those alleles that exhibit a higher incidence in the case group as opposed to the control group are potential markers for the observed phenotype.


[Baxevanis & Ouellette, 2005]

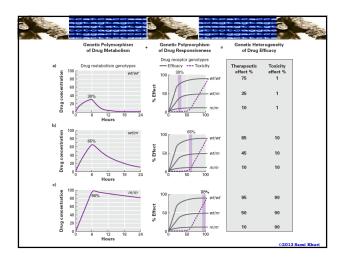
Use of genetic information regarding common disease to understand the biology of human disease to lead to improved diagnostic, therapeutic, and preventive approaches.

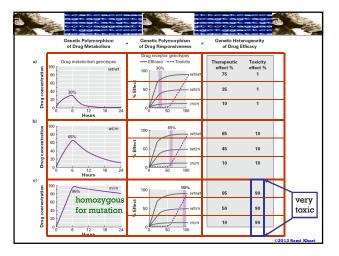




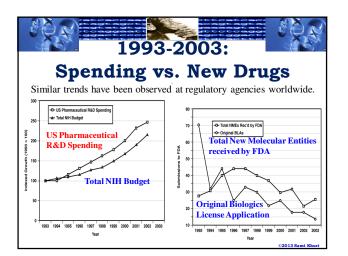
- 5. Will my results be confidential?
- 6. How can I learn more?

Center for Disease Control and Prevention Office of Surveillance, Epidemiology, and Laboratory Services

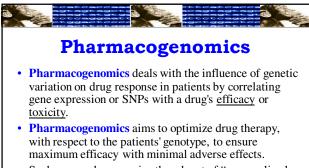


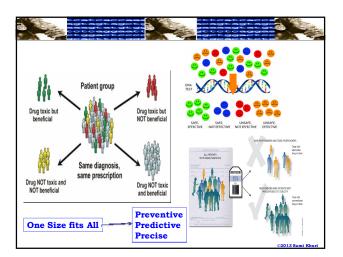

Pharmacogenomics (II)

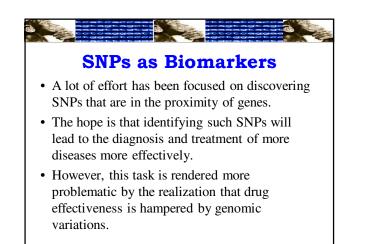
- By doing so, **pharmacogenomics** aims to develop rational means to optimize drug therapy, with respect to the patients' genotype, to ensure maximum efficacy with minimal adverse effects.
- Such approaches promise the advent of "personalized medicine"; in which drugs and drug combinations are optimized for each individual's unique genetic makeup. www.wikipedia.com

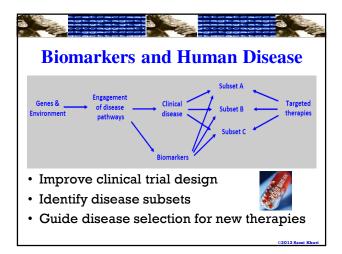

W. Evans and M. Relling Evans and Relling considered the efficacy and toxicity of a drug that requires two genes: An activator with 2 alleles, and A binding site with 2 alleles. There are 9 possible genotypes. Therapeutic effects depend on the genotype of

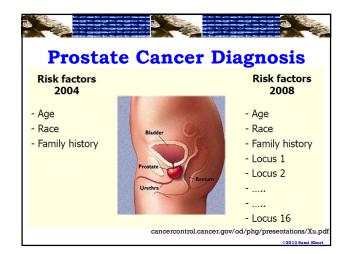
• Therapeutic effects depend on the genotype of the drug receptors in combination with the amount of active drug in circulation.



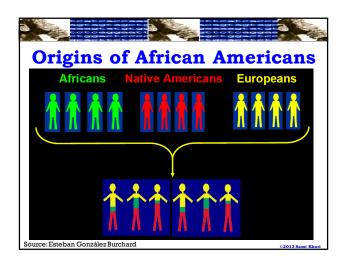


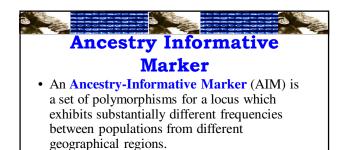




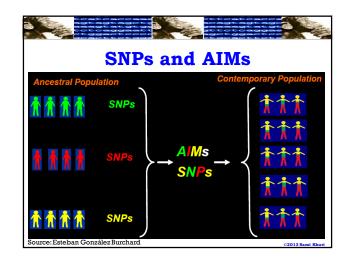

• Such approaches promise the advent of "personalized medicine" in which drugs and drug combinations are optimized for each individual's unique genetic makeup.

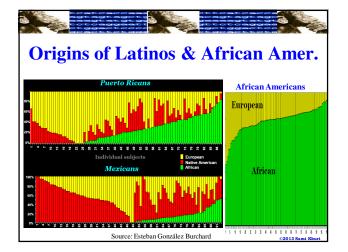
www.wikipedia.com



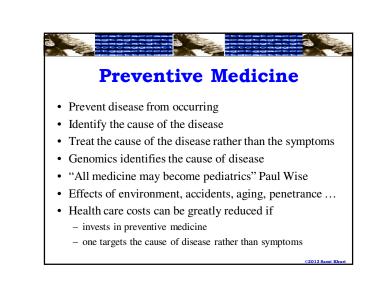


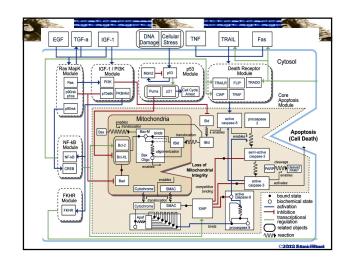
GW	AS :	and l	Pros	stat	e Canc	er
						-
Prostate cano	er risk asso	ciated variants	identifie	d from GWA	s	
		[Allele f	requency		
SNPs	Chr	Position	Cases	Controls	OR (95% CI)	F
rs2660753	3p12	87,193,364	0.10	0.08	1.32 (1.13-1.54)	3.4E-04
rs9364554	6q25	160,804,075	0.33	0.31	1.12 (1.02-1.22)	0.02
rs10486567	7p15	27,749,803	0.78	0.76	1.12 (1.01-1.24)	0.03
rs6465657	7q21	97,654,263	0.51	0.47	1.16 (1.06-1.26)	6.7E-04
rs16901979	8q24 (2)	128,194,098	0.06	0.03	1.66 (1.34-2.07)	3.1E-06
rs6983267	8q24 (3)	128,482,487	0.56	0.51	1.22 (1.12-1.33)	3.6E-06
rs1447295	8q24 (1)	128,554,220	0.17	0.14	1.21 (1.08-1.36)	1.6E-03
rs10993994	10q11	51,219,502	0.43	0.39	1.15 (1.05-1.25)	1.6E-03
rs10896449	11q13	68,751,243	0.49	0.46	1.14 (1.05-1.25)	2.1E-03
rs4430796	17q12	33,172,153	0.61	0.56	1.24 (1.14-1.35)	8.5E-07
rs1859962	17q24.3	66,620,348	0.54	0.50	1.17 (1.08-1.28)	2.0E-04
rs5945619	Xp11	51,074,708	0.42	0.38	1.20 (1.06-1.36)	3.5E-03

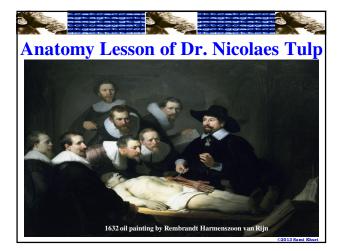

PILING		
FUMOR TYPE INVESTIGATED	BIOMARKER	D 1' 1
Breast	FGFR ²	Personalized
	EGFR ^{2,3}	medicine
Breast, Prostate	p53 ^{2,4}	uses
Colorectal	APC ⁵	
Colorectal, Lung	PIK3 ^{5,3}	information
	BRAF ^{5,3}	about a
Colorectal, Prostate	PTEN ^{5,4}	
_ung	TPA (tissue polypeptide antigen)8	person's
	TCF21 ⁷	genes,
	c-MET ⁶	proteins, and
	CEA ⁸ HER-2 ^{3,4}	•
ung, Prostate	CD44 ⁴	cellular
Prostate	PI3K/AKT/mTOR ⁴	environment
	PSA4	to provent
	PSAP ⁴	to prevent,
	PSMA ⁴	diagnose,
	NKX3.1 ⁴	and treat
	EZH2 ⁴	disease




• By using a number of **AIM**s one can estimate the geographical origins of the ancestors of an individual and ascertain what proportion of ancestry is derived from each geographical region.


en.wikipedia.org/wiki/





- A lot of effort has been focused on discovering such SNPs.
- The hope is that identifying such SNPs will lead to the diagnosis and treatment of more diseases more effectively.
- However, this task is rendered more problematic by the realization that drug effectiveness is hampered by genomic variations.

Concluding Remarks (II) Biology is becoming an information science Progression: in vivo to in vitro to in silico Personalized medicine remains a research concept – it is not yet ready for clinical practice! We are here to add what we can *to*, not to get what we can *from*, Life. William Osler We look to a future in which medicine will be predictive, preventive, preemptive and personalized.