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Abstract

This study describes a new Hidden Markov Model (HMM) system for segment-
ing uncharacterized genomic DNA sequences into exons, introns, and intergenic
regions. Separate HMM modules were designed and trained for speci�c regions of
DNA: exons, introns, intergenic regions, and splice sites. The models were then
tied together to form a biologically feasible topology. The integrated HMM was
trained further on a set of eukaryotic DNA sequences, and tested by using it to
segment a separate set of sequences. The resulting HMM system, which is called
VEIL (Viterbi Exon-Intron Locator), obtains an overall accuracy on test data of
92% of total bases correctly labelled, with a correlation coe�cient of 0.73. Using
the more stringent test of exact exon prediction, VEIL correctly located both ends
of 53% of the coding exons, and 49% of the exons it predicts are exactly correct.
These results compare favorably to the best previous results for gene structure
prediction, and demonstrate the bene�ts of using HMMs for this problem.

1 Introduction

Robust computational solutions to the gene-�nding problem are a valuable resource
for the Human Genome Program and for the molecular biology community at large.
Software that can reliably identify putative genes in DNA sequence can signi�cantly
speed up their discovery in the age of high-throughput genomic sequencing. A number of
gene-�nding systems have been developed in recent years, with varying degrees of success,
but the problem still does not have a satisfactory solution. Many of these systems are still
under development, and improvements continue to appear. Some of the leading systems
are GRAIL [26], GeneID [10], GeneParser [23], SORFIND [11], and FGENEH [25].
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These systems use a variety of sophisticated computational techniques, including neural
network algorithms, dynamic programming, rule-based methods, decision trees, and
probabilistic reasoning. Although none of the systems perform perfectly, the information
they provide is valuable enough that some of them are widely used to identify putative
genes in uncharacterized DNA.

Hidden Markov Models (HMMs) provide a precise probabilistic method for modelling
sequences of discrete data, and therefore seem to be a natural solution for the problem of
�nding new genes in DNA sequences. The VEIL (Viterbi Exon-Intron Locator) system is
an HMM that incorporates several distinct, small HMMs that model information within
exons, introns, intergenic regions, and splice junctions. We have developed a training
regimen that allows us to tie together these smaller HMMs into a single gene-�nding
system.a VEIL uses the well-known EM algorithm [18] to train all its models, and once
the training is complete, it uses the Viterbi algorithm [27] to parse a new sequence into
its component exons and introns. Details of the models and the algorithms are explained
below.

VEIL has been tested on a database of 570 vertebrate sequences that was collected
by Burset and Guigo [5] speci�cally to test gene-�nding systems. Our cross-validated
results show that VEIL obtains a summary accuracy of 92% of bases correctly labelled,
with a sensitivity of 74% and speci�city of 72% for exonic regions, and a correlation
coe�cient of 0.68. Using the more stringent test of exact exon prediction, VEIL correctly
located both ends of 46% of the exons. These results compare favorably with all the
major gene structure prediction programs featured in previous studies. In addition, our
results are carefully cross-validated, which makes it easy for future studies to make direct
comparisons to this one. More details of the comparisons are given in Section 3.b

2 HMMs for gene �nding

Hidden Markov Models have been remarkably successful in the �eld of speech recognition
[1, 16], where they are used in most state-of-the-art systems. Biological sequences, like
speech, can be modelled as the output of a process that progresses through a series of
discrete states, some of which are \hidden" to the observer. HMMs excel at this type
of modelling, and as a result, researchers in computational biology have recently begun
to use them for analysis of DNA and protein sequences. HMMs have been used for

aTo be precise, our system does not simply \�nd genes." Rather, it �nds coding regions beginning
with a start codon and ending with a stop codon. It does not �nd the beginning or end of transcription.
All of the major gene-�nding systems perform this same task. A more accurate description of this task
might be \coding region �nding," but \gene �nding" has become standard usage.

bThe VEIL system is available at ftp://ftp.cs.jhu.edu/pub/veil. This directory contains the executa-
bles and the database used in this study.
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�nding periodicities in DNA [2], for exploring structural similarities of families of genes
[6], for producing multiple sequence alignments [13, 3], for �nding palindromic repeats
[12], and for protein secondary structure prediction [7, 4]. Krogh et al. [14] have used
HMMs to �nd genes in E. coli, where the problem of introns does not arise. The VEIL
system described herein demonstrates the use of HMMs to �nd complex gene structures
in eukaryotic DNA sequences. Kulp et al. [15, 19] have also developed an HMM system
for this task (Genie), using a generalized HMM architecture that is very di�erent from
VEIL's. Genie is a \generalized HMM" in which an edge can be a complete HMM
in itself, and a state can be an arbitrary program. In their GHMM, states use neural
networks for splice site recognition, making their system a neural network/HMM hybrid.
Most of the HMMs produced in these computational biology projects have been relatively
small in comparison to speech recognition systems, in part because of the limited amount
of data available. Larger HMMs have many more free parameters and therefore require
much more data for accurate training. These small models have nonetheless produced
impressive results.

2.1 HMM basics

Although HMMs cannot be covered in detail here, a brief introduction will be useful.
For more a detailed description, see Lee [16] or Rabiner [18]. An HMMmodels a process
in which some of the details are unknown, or hidden. Typically this process is stochastic
in nature. Most commonly, HMMs are used to model sequential data or processes, which
could be a sequence of nucleotides, sounds (for speech processing), or any other discrete
sequence. For this discussion, it is useful to think of an HMM as generating a sequence
as output; however, it is just as easy to treat a sequence as input to an HMM. An
important assumption behind any modeling with HMMs is the Markov assumption: the
states that follow any state v in the model depend only on v, and are independent of all
states preceding v. This independence assumption is essential for the computations used
for training HMMs. We realize that this assumption does not hold for genomic DNA
sequences, and will describe later how the architecture of the model can help reduce its
impact.

An HMM is de�ned by a set of states and transitions, usually represented as a graph
where states correspond to vertices and transitions to edges. Each state v is associated
with a discrete output probability distribution, P (b); for DNA, this output distribution is
simply the probability that the HMMwill generate each base b 2 fA;C;G; Tg. Similarly,
each transition has a probability, which represents the probability that a generating
process makes that transition. Thus the probabilities of all the transitions leaving a
given state v must sum to 1.

Throughout this paper we will be using the terms chain and stage to indicate certain
graph topologies. A chain is a set of n states (numbered 1::n) such that there is an edge
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from state i to state i+1 for each i 2 f1; 2; : : : ; (n�1)g. Furthermore, no edges enter or
leave any state in the chain other than the �rst and last states. (An example of a chain
is shown in Figure 4.) A stage is a set of states that are aligned in the graph. Stages are
indicated in Figure 3. Intuitively, the states that participate in a stage compete for the
basepair that is aligned with the stage; i.e., a stage is a set of states that corresponds
to a single position in a DNA sequence. A series of stages with no loops as shown in
Figure 3 is also a chain.

The Expectation-Maximization (E-M)c algorithm can be used to train HMMs to
recognize new sequences. The E-M algorithm automatically adjusts all the probabilities,
both for the transitions and for the output symbols. The training data is treated as if
it were generated by the model, and the goal is to adjust all the probabilities until the
probability of the data is maximized for the given model topology. The E-M learning
procedure is guaranteed to �nd a locally optimal setting of these probabilities. Once we
have our trained model, we use a dynamic programming procedure known as the Viterbi
algorithm to parse a new input sequence. Parsing a new sequence aligns each base in the
sequence to a particular state in the model. If the states represent exons and introns,
then the parsed input predicts the locations of the exons and introns in the sequence.

2.2 The Design of HMMs in VEIL

VEIL contains a number of separate HMMmodules that are intended to capture proper-
ties of eukaryotic DNA sequence and are speci�cally designed so that VEIL could predict
gene structure. The most important feature in the design of an HMM is its topology,
which we illustrate here. The transition and output probabilities are learned using E-M,
as explained in Section 2.3.

The exon HMMmodule was designed so that it could capture regularities that appear
in exons, such as codon usage (certain codons and dicodons appear more frequently in
coding than in non-coding DNA) and periodicity (because of preferential codon usage,
some bases show a tendency to appear every third position within coding regions) [8].
Another goal in the design of this model was to rule out in-frame stop codons. The
model was initially trained on whole exons only, before being tied together with the other
models as explained below. We designed a similar HMM to capture introns. Compared
to the other modules, the exon and intron HMMs are quite small. We found that the
information in the splice sites, upstream, and downstream models was much more useful
for performing the coding/noncoding segmentation. Note that because HMM methods
do not impose any constraints on the shape of these models, virtually unlimited variation
in the design of the exon and intron models is possible, and it is likely that other designs
can be found that will improve VEIL. The modular design of the system will allow us

cE-M for HMMs is also commonly referred to as the Forward-backward or Baum-Welch algorithm.
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to experiment with alternative models easily. The exon model topology currently used
in VEIL is shown in Figure 1.d

2.2.1 A walk through the exon model

Each arrow in Figure 1 is a transition, which has an associated probability. Each node,
or state, outputs one symbol (one DNA base) when it is processed. (Alternatively, the
whole system can be interpreted as reading symbols instead of writing them.) A node
with a symbol written inside it can only output that symbol. The other nodes output
all four symbols (bases) in proportion to probability distributions stored at those nodes.
A walk through this model starts with a transition from another model, which in VEIL
must be either the intron model or the \upstream" model representing intergenic DNA
and the 5' UTR region. Once the exon model has been entered, the walk proceeds by
visiting a series of states, making sure that the symbol output by each state matches the
symbol from the sequence. The walk leaves a state by following a transition out of that
state, visiting the next state, and so on, outputing one symbol in each state until the end
of the sequence is reached. At the end of the sequence, VEIL must be in a designated
�nal state; if so the path is acceptable. The product of the transition probabilities on
the edges in that path and the output probabilities from the nodes in that path is an
estimate of the probability that the model generated the sequence. Intuitively, this can
be thought of as the con�dence we have that the model might generate the sequence by
that path.

As shown in Figure 1, there are four ways to walk through the exon model, corre-
sponding to the four possible pairs of exon boundaries. First, the exon can start with
the start codon, generate codons by visiting a node in each of the stages of the model
and returning to the �rst stage by a backedge to generate the next codon, and then exit
the model by one of the six transitions that lead to the donor (5' splice site) model.
This path would correspond to a typical initial exon. An alternative walk through the
model starts with the start codon and exits to the downstream model through the states
representing a stop codon. This walk represents a single exon gene. An internal exon
would take a path starting at the acceptor (3' splice site) model and end up at the donor
model. Finally, the last exon in a gene consisting of multiple exons would start at the
acceptor model and continue until it reaches a stop codon, which would force it to exit
to the downstream model.

dAt the present time, there is no publicly available HMM-building software that can handle the size
and topological complexity of the models in VEIL. Systems that allow the construction of chain models
such as HMMer and SAM are available, but we needed to construct arbitrary models with any topology
(e.g., not just chains) and to process sequences of tens of kilobases reasonably quickly. Therefore we
developed our own HMM system to build, train, and test these models. Our code for constructing novel
HMMs will be made available in the near future.
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Figure 1: The exon and stop codon models in VEIL. This model can be entered in two
ways: either just after outputting a start codon, or upon leaving the 3' splice site model,
which follows the intron model. The three central columns of states correspond to the
three codon positions. Each of these 12 states is labeled with the base that it can output.
The system outputs bases three at a time, looping back after each codon. Note that
the paths corresponding to a stop codon (TAA, TAG, and TGA) all force the system to
exit from the model (four states at lower right of �gure). Alternatively, the system can
exit through the 5' splice site, in which case an intron must follow the exon. The two
blank states on either end of the model can output any base; these \absorbing states"
allow the model to align itself to the proper reading frame, as splice junctions need not
respect codon boundaries.
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Note that the exon model consists primarily of three stages, meaning that bases
will be read by the model in groups of three, corresponding to codons. Thus if certain
codons appear with characteristic frequencies in exons, the probability distributions
on the corresponding sets of three states can be adjusted accordingly. The backedges
allow the exon model to loop through any number of codons. Of course, exon-intron
boundaries need not correspond to codon boundaries, so the model needs to be able to
adjust itself. This is accomplished by the two states on either side of the model, which
can absorb up to two extra bases before entering or leaving a coding region. Once the
model is inside a coding region, it must read bases in groups of three, but it can shift at
either or both ends. (Note that this model cannot recognize a 1- or 2-base exon.)

The four states at the bottom of Figure 1 represent the stop codon model. Note that
any tag, tga, or taa that starts at the t node in the �rst stage is forced to follow a path
to the downstream model; i.e., it leaves the exon model. Other codons that start with a
t lead back into the third stage of the main model. By this method we avoid erroneously
allowing in-frame stop codons that are not the last codon of the last exon.

2.2.2 The intron and splice site models

The intron model of Figure 2 is very similar to, though a bit simpler than, the exon
model. There are still three main stages which are traversed in order and cyclically.
This is because, based on previous research [8], there are di�erences in the frequency of
codon usage between exons and introns; VEIL is trying to capture those di�erences here.
All paths through the intron model start at the donor site model and exit through the
acceptor site model. The machinery for handling stop codons is, naturally, unnecessary
in this model.

The splice site models are very simple chains with multiple stages. Like a pipeline,
every path through them starts at the �rst stage, ends at the last stage and has exactly
the same length. These models have more edges and states than the exon or intron
models, yielding a more precise probability estimate for each path through them. The
donor model has 9 stages, and the acceptor model has 15 stages. The lengths of these
models were based on the lengths of the consensus sequences for donor and acceptor
sites as given in Mount et al. [17] and Senapathy et al. [22].

While the exon model will mark every state traversed in it with an e, and the intron
model marks every state traversed in it with an i, the splice site models have some states
indicating they are part of an exon and others that are part of an intron. In the donor
site model shown in Figure 3, stages 1-3 are part of the exon and stages 4-9 are part
of the intron, which indicates that the bases that align with them should be marked
accordingly. In the acceptor site model (not shown), where the exon-intron boundary
occurs at positions 14-15, stages 1-14 are part of the intron while stage 15 part of the
exon.
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Figure 2: The intron model in VEIL. This model functions similarly to the exon model,
with a few important di�erences. It reads bases three at a time in order to capture dif-
ferences in the frequency of codon usage between coding and noncoding regions. Unlike
the exon model, stop codons do not lead out of this model. The intron model must be
entered and exited via splice junctions, which enforces the constraint that exons must
appear on both sides of each intron.
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Figure 3: The donor site (5' splice site) model. Sequences must pass through this model
to get from the exon model to the intron model. The exon-intron boundary occurs
between stages 3 and 4; therefore stages 1-3 are part of the exon and stages 4-9 are part
of the intron. Each state can output only one base, as indicated by the labels. Each
edge between two states here contains the conditional probability of outputting a base
in the latter state given the base shown in the previous state.
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2.2.3 Other HMM modules

The start codon model, shown in Figure 4, is an extremely simple chain whose mechanism
is obvious from the diagram. The path through the start codon model starts in the
upstream model and leads to the exon model.

a t gUpstream Exon

Figure 4: Start Codon Model

We also created modules to capture the intergenic regions (upstream of the start
of translation, and downstream of the stop codon). The intergenic model contains two
simple chains of stages (representing the upstream and downstream intergenic pieces)
with loops on the ends to absorb extra bases. Those loops allow the model to align
at any place within the input sequence. The upstream chain has 15 stages, and the
downstream chain has 10. The absolute lengths of these chains may not be optimal;
however, we attempted to make the upstream chain long enough to capture some of the
sequence regularities known to exist 5' of the start codon.

Finally, we created a small module to capture the 3' polyadenylation binding site,
whose consensus sequence is AAATAA. This hexamer, which is the site where binding
occurs before the poly-A tail is added to mRNA, occurs in 70% of the 3' noncoding
regions in our training data. It occurs at widely varying distances from the stop codon,
but this poses no problem for the VEIL architecture. We simply created a chain of
six states that recognizes only AAATAA, analogous to the 3-state chain for the start
codon. This chain is looped into the �nal stage of the downstream model, so that VEIL
is \encouraged" to put an AAATAA after the stop codon if possible. An important note
here is that we added this chain to the model after training, and no additional training
was necessary. The overall performance improved by 1-2% as a result. This demonstrates
how easily biological information can be incorporated into the VEIL HMM.

2.2.4 The combined HMM

The �gures shown so far omit some edges for clarity, but in reality the separate modules
of VEIL are connected with numerous edges. Figure 1 shows six edges leaving the exon
model and entering the 5' splice site (donor) model, and Figure 3 shows four edges from
the exon model into the 5' splice site model. The true picture would show 24 edges
leading from the exon model to the 5' splice site model, one for each of the pairings
(x; y), where x is one of the states in the exon model depicted with a transition to the
donor site model, and y is a state in the donor site model depicted with a transition
from the Exon model.
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Tying all the smaller models together produces the complete VEIL model, shown
schematically in Figure 5. This diagram is even more compressed, in order to give an
overview of the VEIL architecture. Edges in this schematic represent multiple edges in
the true model. Hence, in this schematic, the single edge leading from the exon model
to the donor site model represents 24 edges. Other edges in the schematic are similar.

Upstream Start Codon Exon Stop Codon Downstream

3’ Splice Site Intron 5’ Splice Site 5’ Poly-A Site

Figure 5: Combined Model Schematic

Note that to combine the models, a total of 112 edges had to be added. These are the
edges that bene�tted from the �nal round of E-M training, where the complete model
was trained on whole sequences (described below). Many of these edges are critical,
especially those that cross into and out of the exon model. These transitions must be
made correctly at both ends of an exon in order to correctly predict the exon, which is
one of the main criteria we used for judging the accuracy of the system. In total, the
VEIL HMM has 1003 edges and 241 states.

The VEIL model contains many states that are labeled with speci�c bases; this points
out a nice feature of HMMs that we exploited in our system. Namely, during training we
can specify that certain states and transitions are �xed, i.e., not subject to re-estimation
by the learning algorithm. In this way, certain parts of the model were hard-wired with
speci�c biological information. For example, the start and stop codons were explicitly
coded as sequences of three states each, and the 5' and 3' splice junctions were coded as
chains of states that captured the consensus sequence probabilities for those regions.

After the splice sites are fully trained, one can read o� conditional probability ma-
trices from the edge and state probabilities in those models (this use of conditional
probabilities was suggested by Simon Kasif). These edges contain, after training, the
conditional probability of observing base y in position i given that base x appears in
position i�1. Unlike neural networks, the weights on the edges in HMMs have a precise
probabilistic interpretation. Furthermore, the ability to interpret the edges allows us
to validate the training algorithm, because we can compare the values in the splice site
models to sequence pro�les for splice sites that appear in the literature. For example,
we can look at the probabilities on outgoing edges in our 5' splice site model, where the
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edge from the G state in stage 6 to the A state in stage 7 has a transition probability
of 0.82. This means that if an intron starts with GTG (the G and T edges in the ap-
propriate stages have probability 1.0 in the 5' splice site model), then the next base will
be A with probability 0.82. This example illustrates how the HMM's strict probabilistic
framework helps provide insight into what the model \learned."

2.3 Training an HMM: the E-M algorithm

Three e�cient algorithms, the Forward, Viterbi, and Expectation Maximization (E-M)
algorithms, are used in computing with HMMs. For our experiments, we only needed
the Viterbi and E-M (sometimes called the Forward-Backward) algorithms, so we will
only describe those algorithms here. This description is merely a summary; for details
the reader should see Lee [16].

The E-M algorithm is used to solve what is known as the learning problem in HMMs;
i.e., determining reasonable values for all the probabilities in an HMM. The model
topology is �xed, and all of the output probabilities and transition probabilities are
initialized to random values. (If any prior estimates of these probabilities are available, it
is usually bene�cial to initialize them to these estimates instead.) Upon being presented
with a set of DNA sequences, the E-M algorithm re-estimates all of these probabilities.
Briey, it runs each training sequence through the model and computes the posterior
probability P (sjM) for each sequence s. These values are then multiplied together to
produce P (SjM), where S represents all the sequences. The re-estimation procedure
then adjusts all of the probabilities in order to increase P (SjM). The data are then
run through the model again and the probabilities are further re�ned. This process is
iterated until the P (SjM) is maximized. The E-M algorithm is guaranteed to converge
to a locally optimal estimate of all the probabilities in the model.

We utilized a variant of the E-M algorithm that we customized for DNA sequence
analysis. Prior to training the combined model, the DNA alphabet of fA;C;G; Tg
was combined with the alphabet we used to label our sequences, fN;E; Ig (intergenic,
coding/exon and noncoding/intron). This produced an alphabet of twelve symbols,
fNA,NC,NG,NT,EA,EC,EG,ET,IA,IC,IG,ITg , that described the DNA and the proper
labelling associated with each base.

Prior to processing a training sequence, the symbols are replaced using the 12-symbol
alphabet. Thus portions of the sequence are labelled according to whether they fall in
exons, introns, or noncoding regions. Then when VEIL processes the sequence, those
portions labeled with, for example, fEA,EC,EG,ETg, are forced to align to the exon
model. Likewise, those portions of the sequence that fall in introns and intergenic regions
are forced to align to the correct parts of the HMM. Once the model is trained, the states
are labeled not with the 12 symbols, but with the original set of four. This allows VEIL
to process new sequences, for which the exon and intron regions are unknown, in order

12



to produce the optimal alignment of those sequences to the model.
Each iteration of the E-M algorithm runs in time O(Ne), where N is the total length

of all the sequences in the training database and e is the number of edges in the model.
In theory, the number of iterations can be very large, which might seem to make this
an extremely time-consuming procedure. In practice, though, E-M usually converges
quickly, and in our experiments it always converged in less than a dozen iterations for
each of the modules.

2.4 Parsing a new sequence: the Viterbi algorithm

After training, the model is ready to be used to interpret new sequences. For this
purpose, we use the Viterbi algorithm [27], a dynamic programming algorithm that
e�ciently aligns any sequence to an HMM. Given a sequence and a trained HMM, the
Viterbi algorithm will �nd the most likely sequence of states through the model for that
particular sequence. (In addition, the Viterbi algorithm computes the probability of the
model producing the sequence via that path.) Although there are an exponential number
of distinct paths through the model, the Viterbi algorithm �nds the best one in O(ne)
time, where n is the length of the aligned sequence. (The Markov assumption makes
it possible to follow an e�cient dynamic programming strategy.) Since VEIL contains
explicit states representing the start codons, splice junctions, and stop codons, this
alignment tells us directly where the �rst exon begins and where each of the subsequent
exon-intron transitions occurs.

In order to search e�ciently for the best path, the Viterbi algorithm builds a data
structure called a trellis, which requires O(ne) storage space. (For details of how the
trellis is constructed, see [16].) The trellis consists of a sequence of stages, one for each
successive base in the input. Each stage contains one node for each state in the model.
Every edge (u; v) in the model appears once between every successive pair of stages in
the trellis, connecting node u to node v. Thus the trellis stages themselves can be quite
large and densely connected to each other. The algorithm builds the trellis from left to
right, beginning with the �rst character (the �rst base) of the input sequence. The space
requirement is clearly very large for long sequences and large models. Fortunately, the
trellis can be pruned to reduce space while the algorithm is being run, using the following
observation: as the trellis is built, we can keep track of which nodes in each stage appear
along any optimal paths. Most nodes will fail this test, and are therefore not needed
any longer. After the trellis is extended from stage i� 1 to stage i, all vertices in stage
i � 1 that are not used in an optimal path can be removed from the computation as
later stages are computed. All vertices in stages i� 2 through 1 that are not referenced
by any later stages can be recursively removed as well. In our experiments, this pruning
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technique yielded more than a 95% space savings. e

2.5 Assumptions inherent in VEIL

There are a number of assumptions that VEIL makes when it parses a new sequence.
These assumptions are shared by most gene-�nding systems, and therefore do not in-
validate the comparisons we present. However, some of them still need to be relaxed to
produce a completely general gene �nder.

1. The �rst \exon" of every gene is de�ned to begin with a start codon; i.e., any 5'
untranslated sequence is processed by the upstream model.

2. Noncoding regions and introns are anked by exons.

3. Each piece of DNA presented for analysis will start and end with a noncoding
region and contain a single gene.

4. The minimum length of a coding exon is 7 bases. (The acceptor site model includes
one coding base, the exon model absorbs at least three bases, and the donor site
model absorbs three more coding bases.)

These assumptions have a number of shortcomings, most of which are minor. There are
genes in which the stop codon appears in the middle of an exon (sometimes not even
the last one). On the 5' end, the start codon may appear somewhere in the middle of
an exon (possibly not even the �rst).f The parsing process in VEIL produces a list of
exons that by de�nition begins with a start and ends with a stop codon; therefore it is
more accurate to refer to this process as locating the coding regions, not the entire gene.
More critically, VEIL's output leads directly to the protein sequence produced by the
gene.

Assumption number 3 is the only di�erence between a truly general gene-�nder and
VEIL; we assume that exactly one gene exists in the data, which of course is not neces-
sarily true. Other benchmark experiments to date have also relied on this assumption
[5]. Extending VEIL to relax this assumption is discussed below.

Finally, many gene �nding systems take advantage of the fact that exons are in
consistent reading frames; e.g., if the �rst exon ends in the middle of a codon, the

eThis increased the program's speed substantially by reducing the number of page faults.
fThere is some inconsistency in the de�nition of \gene" and \exon" that is reected in the annotations

in the DNA sequence database entries themselves. For example, some entries use the stop codon to
de�ne the end of the �nal exon, while others use the location of the end of the spliced mRNA transcript.
Likewise with the start of transcription and translation { some entries use the start codon to de�ne
the start of the �rst exon, even though this may not be technically correct when compared with the
transcript.
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second exon will take up in the same frame where the �rst one left o�. This assumption
is important to other dynamic programming systems such as GRAIL [28] and MORGAN
[21], because it signi�cantly reduces the number of alternative parses. It leads to a
problem, though, since it makes the segmentation algorithm very sensitive to frame
shift errors realized as indels in the exon regions.g

Because an HMM uses only local information, it is di�cult to adjust it to keep track
of frame shifts; essentially, one would have to duplicate or tie together the output prob-
abilities of large pieces of the model to represent di�erent frames and phases. Although
this could be accomplished, we made a conscious decision to ignore frame information,
which makes the HMM simpler and avoids the frameshift problem. On the downside,
relaxing this assumption opens up the possibility that the VEIL will erroneously label
certain regions as exons: it is quite possible that subsequences that are not true exons
might have strong coding characteristics. If such subsequences are out of frame with
respect to a gene being assembled, a frame-sensitive method can exclude them, while
VEIL cannot. As a result, VEIL might erroneously include exons that do not match the
coding frame of the rest of the gene. On other hand, VEIL's splice junction modules
should e�ectively exclude most spurious exons, since noncoding regions are unlikely to
match well with the splice site models.

2.6 Finding more than one parse

By default, the Viterbi algorithm gives us the single best alignment of a sequence to
our model, and this is what the current version of VEIL outputs. It is straightforward
to modify this to determine the k best parses by keeping the best k in each state in
the Viterbi trellis. This requires a factor of k additional storage space, and a factor of
O(k log k) additional time. It is unclear whether using the k best parses would provide
much bene�t, however, because the top ranking parses all look highly similar to one
another, a phenomenon that has been observed in other systems as well [24].

3 Methods and Results

3.1 The database of DNA sequences

The �nal accuracy of the VEIL system, and the accuracy of the probabilities it learns,
depend to a large extent on the quality and quantity of data used to train them. In
order to compare VEIL to other gene �nding systems, we used the database collected
in the recent comprehensive study by Burset and Guigo [5], comparing a number of

gThe authors of GRAIL have proposed an iterative algorithm for removing apparent frame shifts[29,
9].
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the major gene-�nding systems using a single database. This data consists of sequences
from GenBank release 85.0 since January 1993, so it included relatively recent entries.
Burset and Guigo �rst collected every complete vertebrate protein coding sequence, and
then discarded entries in a series of quality control steps. They removed all pseudo-
genes, all entries with in-frame stop codons, all entries with no introns (many of which
were cDNAs), and all entries with non-standard splice junctions (i.e., the sequence con-
tained an intron that did not begin with GT and end with AG). They also removed
immunoglobulins and histocompatibility antigens. The resulting data set contains 570
complete sequences, each containing exactly one gene with at least one intron.

Among these 570 vertebrate sequences, there are a total of 2649 exons and 2079
introns. Six of the sequences contain no 5' untranslated region (i.e., they begin with a
start codon), but the remaining sequences contain at least a few bases upstream of the
initiation codon.

Note that including di�erent organisms in the data implies that the splice site models
will contain \average" statistics on the consensus sequence for these sites. Insofar as the
splice site machinery di�ers among vertebrates, this will cause VEIL to overgeneralize
somewhat. The only remedy to this is to collect enough data on a single organism to
create a species-speci�c version of VEIL. As part of our future e�orts, these more speci�c
models will be constructed (a human-speci�c VEIL is already under development) as
data becomes available.

3.2 Experimental design

We performed a 5-fold cross validation experiment to estimate how well the system
would perform when tested on data that was not in the training set. A cross validation
(CV) is a standard experimental technique for determining how well a classi�er system
will perform on unseen data. The data is randomly divided into 5 roughly equal-sized
partitions (for 5-fold CV). For each of these partitions, the system is trained on the other
four partitions and then tested on the held-out partition. Combining the results from the
�ve test sets gives an accurate estimate of how well the system will perform on unseen
data. This is because each test set was new data with respect to the partitions the system
was trained on. In our experiments, the 570 sequences were randomly partitioned into
�ve sets of 114 sequences each. Each training set in the experiment contained roughly
2100 exons and each test set contained about 500 exons. Each of �ve copies of the VEIL
HMM was trained on four of the �ve sets and tested on the remaining one.h

Although the 5-fold CV is an excellent design for estimating accuracy on unseen
data, one confounding issue with this data set is the existence of highly homologous

hThe complete data set, broken up into the �ve partitions used in these experiments, is available on
the VEIL ftp/web site, at ftp://ftp.cs.jhu.edu/pub/veil.
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sequences in the data. For a new sequence with close homology to an existing GenBank
sequence, the database annotation will in most cases be superior to the results of any
gene �nder. To estimate the accuracy of VEIL on non-homologous sequences, therefore,
we repeated the 5-fold CV above after removing homologous sequences from the Burset
and Guigo data set. Using the same partitioning of the data, we removed from each
test set all sequences that were at least 80% identical to any sequence in the training
set. This procedure removed an average of 18 sequences from each test partition. These
results are reported as the \non-homologous" test results below.

It should be noted that the objective function that is maximized by the E-M algo-
rithm is not the same as the functions we used to evaluate VEIL's performance. The
objective function is the metric on which optimization is taking place. The E-M algo-
rithm maximizes the probability of the training sequences given the model; on the other
hand, the tables given below describe the percentage accuracy in terms of total base
pairs correctly labeled and total exons correctly found. The local maximum that the
E-M algorithm �nds may not be a local maximum in the metrics we use to evaluate the
performance of our system. For example, there is no reason to believe that maximizing
the probability of the training sequences will be the same as maximizing the number of
exons that have both edges correct.

We therefore developed a method to avoid \overtraining" and to focus the training on
the accuracy at �nding exons: we sampled the desired metrics on the training set after
each iteration of training. The four metrics we used in this step were (1) the percentage
of true coding bases correctly predicted (nucleotide sensitivity), (2) the percentage of
predicted coding bases that were correct (nucleotide speci�city), (3) the percentage of
true exons predicted exactly, both on the 5' and the 3' ends (exon sensitivity), and
(4) the percentage of predicted whole exons that exactly matched a true exon (exon
speci�city). We used the arithmetic mean of the four metrics as an indicator of the
goodness of a particular model. We chose to stop training the HMM as soon as we �nd
that the next iteration of training decreases this metric more than a threshold amount.
This is illustrated in Figure 6. The rapid convergence of these graphs (in some cases
the system is close to its optimum performance in just one iteration) is due to the pre-
training of the submodels, which initializes the probabilities of a large majority of edges
and nodes to locally optimal values. Many of these pre-trained values, such as those in
the splice junction models, were �xed and were not adjusted by the E-M procedure.

A �nal observation about the training procedure is that in its current state, most
of the VEIL model can be trained \directly"; i.e., the E-M algorithm is not strictly
necessary. Because most of the states only allow one output, there is only one possible
alignment of each training sequence to the model. Using this property, the output and
transition probabilities can be computed directly in a single pass through the training
data, without any need for an iterative procedure (Simon Kasif, personal communica-
tion). This would result in a much faster training algorithm. However, we plan to add
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Figure 6: Overtraining avoidance graphs. The top graph shows how the probability of the
training data given the model increases steadily with each training iteration. The vertical
axis is the log base 4 of the probability of data, plus a normalization constant. A training
iteration is one pass of the data through the E-M algorithm. The lower graph shows
that, although the probability of the data increases throughout training, the accuracy
does not increase uniformly, but seems to peak after approximately 10 iterations. The
graph shows accuracy measured in terms of the number of coding nucleotides correctly
predicted.
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more states to VEIL in the future, and we expect to continue using E-M because it gives
us the greatest exibility to extend and re-train the model.

3.3 Results

The results are summarized in Table 1. The results for the training and test set for each
of the �ve partitions of the cross validation are shown, as well as the combined results
for all of the �ve test sets. The union of the test sets is the entire set, so the combined
result shows the overall accuracy on the data. Note that every example appeared exactly
once as a member of a test set. The table also shows the accuracy of VEIL on the non-
homologous test data, for which no test sequence is 80% or more identical to any training
sequence. This led to a total of 93 sequences being removed from all partitions.

In the table, sensitivity (Sn) for nucleotides is the percentage of coding bases that are
labeled correctly, and for exons it is the percentage of whole exons which are predicted
exactly. Speci�city (Sp) for nucleotides is the percentage of exon bases that are predicted
correctly, and for exons it is the percentage of exons predicted that are exactly correct.
CC is the correlation coe�cient, de�ned as

CC =
(TP )(TN)� (FP )(FN)q

(TP + FN)(TN + FP )(TP + FP )(TN + FN)

where TP is true positives (number of coding bases correctly predicted), TN is true
negatives (number of noncoding bases correctly predicted, FP is false positives, and FN
is false negatives. 1ME stands for \1 matching edge" and is the percentage of exons
for which VEIL predicted at least one of the edges exactly; and Ov is the percentage
of exons for which VEIL's prediction overlaps the true exon (including exact matches).
P(All) is the probability that VEIL will mark any base correctly.

Overall, VEIL obtained 83% sensitivity and 72% speci�city for coding bases on the
full data set, which dropped to 80% and 72% on the non-homologous data. The corre-
lation coe�cient was 0.73 on the full set, and 0.71 using non-homologous data. Exact
exon prediction is a more stringent criterion which counts only those coding exons for
which VEIL gets both the 5' and 3' ends exactly right. On this measure, VEIL achieved
53% sensitivity and 49% speci�city, which dropped slightly to 50% and 47% on the
non-homologous data.

A comparison of these and other results in Table 1 to eight other major gene-�nding
systems is given in Table 2. Most of these results are from Burset and Guigo's com-
prehensive study [5], with the exception of Genie [19] and MORGAN [20]. This table
shows that VEIL's performances on nucleotide prediction and especially on exact exon
prediction are competitive with the best results reported previously. Only three systems
(Genie, MORGAN, and FGENEH) show better overall accuracy as measured by the
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Nucleotides Whole Coding Exons
Partition Sn Sp CC P(All) Sn Sp 1ME Ov

Full Vertebrate Data Set
Train-1 0.82 0.75 0.75 0.93 0.54 0.53 0.73 0.80
Test-1 0.80 0.76 0.74 0.93 0.51 0.49 0.71 0.80
Train-2 0.82 0.74 0.74 0.93 0.53 0.50 0.73 0.80
Test-2 0.80 0.75 0.73 0.93 0.52 0.52 0.70 0.78
Train-3 0.82 0.75 0.74 0.93 0.55 0.52 0.73 0.81
Test-3 0.75 0.70 0.68 0.92 0.45 0.44 0.64 0.72
Train-4 0.82 0.75 0.74 0.93 0.54 0.51 0.73 0.81
Test-4 0.79 0.72 0.71 0.93 0.50 0.46 0.69 0.76
Train-5 0.82 0.73 0.73 0.93 0.54 0.50 0.72 0.80
Test-5 0.87 0.70 0.74 0.92 0.53 0.47 0.77 0.86
Test-All 0.83 0.72 0.73 0.92 0.53 0.49 0.73 0.81

Non-Homologous Test Data
Test-1 0.79 0.73 0.72 0.92 0.50 0.47 0.71 0.79
Test-2 0.80 0.74 0.73 0.93 0.50 0.51 0.69 0.77
Test-3 0.76 0.70 0.69 0.92 0.46 0.44 0.66 0.74
Test-4 0.79 0.71 0.71 0.93 0.51 0.46 0.70 0.77
Test-5 0.87 0.69 0.73 0.92 0.51 0.45 0.76 0.85
Test-All 0.80 0.72 0.71 0.92 0.50 0.47 0.70 0.78

Table 1: Results of 5-fold cross validation for the full 570 gene vertebrate data set and
for the non-homologous cross validation. In the non-homologous data, all sequences that
had 80% or more homology to any training sequence were removed from each test set.
Sensitivity (Sn) for nucleotides is the percentage of coding nucleotides correctly labeled
as coding. Speci�city (Sp) is the percentage of nucleotides labeled as coding that were
actually coding. P(All) is the overall probability of predicting any base correctly. The
right half of the table contains the corresponding values for whole exons; i.e., the accuracy
at predicting the coding regions exactly. 1ME is the percentage of exons for which one
or both edges was correct, and Ov is the percentage of true exons that overlapped a
predicted exon. The Test-All line contains the combined results for all test data.
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Nucleotides Whole Coding Exons
System Sn Sp AC Sn Sp Ov
VEIL 0.83 0.72 0.73 0.53 0.49 0.81
MORGAN 0.82 0.80 0.78 0.58 0.54 0.84
Genie 0.78 0.84 0.77 0.61 0.64 0.85
FGENEH 0.77 0.85 0.78 0.61 0.61 0.85
GeneID 0.63 0.81 0.67 0.44 0.46 0.72
GeneParser2 0.66 0.79 0.67 0.35 0.40 0.71
GRAIL 2 0.72 0.87 0.75 0.36 0.43 0.75
GenLang 0.72 0.79 0.69 0.51 0.52 0.79
SORFIND 0.71 0.85 0.73 0.42 0.47 0.76
Xpound 0.61 0.87 0.68 0.15 0.18 0.67

Table 2: A comparison of VEIL's performance on 570 vertebrate sequences with other
gene-�nding systems. Sources for all results are cited in the text. AC is the approximate
correlation proposed by Burset and Guigo [5], as a more stable overall indicator than
the correlation coe�cient. VEIL's AC and CC values were identical for this data.

approximate correlation [5], but this is confounded by the fact that the training data for
each of these systems overlapped the test set here. (For Genie, 120 of the 570 sequences
were included in Genie's all-human training set. For MORGAN, a separate test set
comprising 20% of the sequences was used. For the other systems, overlap exists but is
not known precisely.) A direct comparison is di�cult to make because of this mingling
of training and test data. In order to make such a comparison reliably, the other systems
would have to be re-trained and tested using a methodology such as cross validation,
which would require access to the source code.

4 Conclusions

The design of VEIL is still changing. Hidden Markov Models can be constructed in
an in�nite variety of shapes and sizes, and their e�ectiveness varies widely depending
on the design. The VEIL system demonstrates, in its current form, that HMMs can be
trained to �nd coding regions in DNA as accurately as, if not more than, the best known
gene-�nding systems. With further development, it is quite likely that VEIL's perfor-
mance will improve. One direction for improvement is to design and integrate further
small HMMs into VEIL that model additional signals associated with genes. For exam-
ple, we can model the promoter sequences upstream (5') of the start of transcription.
The 3' polyadenylation site has already been added, resulting in an across-the-board
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improvement that is included in the results presented above.
As more data becomes available on individual organisms, it will be possible to train

HMMs on data from a single species. We are in the process of building a human-only
VEIL, which we expect to release during 1997. In the near future we expect to be able
to create specialized versions of VEIL for mouse, arabidopsis, and other organisms, as
the genome projects for those organisms proceed.

With a simple modi�cation, VEIL can be used to perform whole genome and arbi-
trary sequence parsing. As stated in section 2.5, our current implementation requires
the sequence to begin and end its alignment in the intergenic region. By making all
states be valid initial and �nal states, and connecting the two intergenic region models
together, we can permit VEIL to �nd multiple genes (or no genes at all) in an input
sequence. This would allow VEIL to �nd genes in larger stretches of uncharacterized
DNA, and it would allow us to remove the assumption in the current system that the
input sequence contains exactly one gene.

Naturally, if one can �nd homologous sequences by searching the major sequence
databases, and if the homologous entries include annotations showing where the exons
are located, then the task of �nding a gene in a new sequence becomes much easier.
A number of systems have already reported major improvements by tying together a
purely computational approach with a database search method. Burset and Guigo [5],
for example, found that systems that did this achieved a substantial increase in the
accuracy of exact exon prediction, from a typical level of 40% on average to more than
60%. A related idea is to use the new and rapidly growing expressed sequence tag (EST)
databases to improve the accuracy of coding region prediction. If one �nds a hit between
a new sequence and an entry in an EST database, then the corresponding subsequence
can be labelled as part of an exon.

We have already implemented in VEIL a mechanism for using information from ESTs
or homologous sequences; we use the alphabet-shift mechanism described earlier. Sim-
ply stated, the alphabet is augmented by adding four new symbols: (EA;EC;EG;ET ).
These symbols indicate the corresponding base must align inside the exon model. Any
subsequence that is found to hit an EST would be replaced with this augmented version
of the sequence. Because these special symbols appear only within the exon model, the
subsequences that hit the EST database would be forced by VEIL to align to coding
regions. If an EST spanned two or more exons, VEIL would detect this as well; in fact,
in such cases VEIL would be guaranteed to �nd the correct exon-intron boundaries. An
open problem that remains to be solved is the presence of large amounts of untrans-
lated sequence in the EST databases, particular 3' UTRs, which should align to the
downstream model rather than to the exon model.

Although database lookup procedures are somewhat distinct from the problem of
modelling genes de novo using computational methods, they clearly represent an im-
portant opportunity for overall improvement. And as long as sequences with no clear
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homology to known database entries are being discovered, computational modelling
methods such as HMMs will serve an important function.
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